Skip to main content
Log in

Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (Menaquinone-7) production in biofilm reactors

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Menaquinone-7 (MK-7) is the key form of vitamin K used as a dietary supplement and its production revolves around Bacillus subtilis natto. Current fermentation strategies, which suggest static fermentations without aeration and agitation, can be problematic for large scale MK-7 production due to biofilm formation. The use of biofilm reactors, therefore, is proposed in the present study, which could utilize both agitation and aeration without interrupting MK-7 secretion. In this study, biofilm reactors were constructed using the selected plastic composite support (PCS) and B. subtilis natto strain for MK-7 production. Using response surface methodology (RSM), optimum growth parameters including temperature, pH, and agitation were determined in a glycerol-based medium. Results were presented in a statistical model (R 2 = 0.90), leading to optimum growth conditions of temperature (35 °C), agitation (200 rpm) and pH (6.58). Model-predicted MK-7 concentration was validated and MK-7 concentration of 12.09 mg/L was produced in the biofilm reactor. The obtained concentration was 58% higher as compared to the suspended-cell culture (7.67 mg/L). The results of this study will provide a critical step towards improved industrial scale production of MK-7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dam H (1935) The antihaemorrhagic vitamin of the chick: occurrence and chemical nature. Nature 135:652–653

    Article  CAS  Google Scholar 

  2. Binkley SB, Maccorquodale DW, Thayer A, Doisy EA (1939) The isolation of vitamin K1. J Biol Chem 130:219–234

    CAS  Google Scholar 

  3. Widhalm JR, Ducluzeau A-L, Buller NE, Elowsky CG, Olsen LJ, Basset GJC (2012) Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of Lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-CoA. Plant J 71:205–215. doi:10.1111/j.1365-313X.2012.04972.x

    Article  CAS  Google Scholar 

  4. Davidson RT, Foley AL, Engelke JA, Suttie JW (1998) Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteria. J Nutr 128:220–223

    CAS  Google Scholar 

  5. Mahdinia E, Demirci A, Berenjian A (2017) Production and application of menaquinone-7 (vitamin K2): a new perspective. World J Microbiol Biotechnol 33:2. doi:10.1007/s11274-016-2169-2

    Article  Google Scholar 

  6. Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280

    CAS  Google Scholar 

  7. Berenjian A, Mahanama R, Kavanagh J, Dehghani F (2015) Vitamin K series: current status and future prospects. Crit Rev Biotechnol 35:199–208. doi:10.3109/07388551.2013.832142

    Article  CAS  Google Scholar 

  8. Schurgers LJ, Teunissen KJF, Hamulyák K, Knapen MHJ, Vik H, Vermeer C (2007) Vitamin K-containing dietary supplements: comparison of synthetic vitamin k1 and natto-derived menaquinone-7. Blood 109:3279–3283. doi:10.1182/blood-2006-08-040709

    Article  CAS  Google Scholar 

  9. Howard LM, Payne AG (2006) Health benefits of vitamin k2: a revolutionary natural treatment for heart disease and bone loss, 1st edn. Basic Health Publications, Inc., Laguna Beach

    Google Scholar 

  10. Shi J, Zhou S, Kang L, Ling H, Chen J, Duan L (2017) Evaluation of the antitumor effects of vitamin K 2 (menaquinone-7) nanoemulsions modified with sialic acid–cholesterol conjugate. Drug Deliv Transl Res 2:1–11. doi:10.1007/s13346-017-0424-1

    Google Scholar 

  11. Gast GCM, de Roos NM, Sluijs I, Bots ML, Beulens JWJ, Geleijnse JM, Witteman JC, Grobbee DE, Peeters PHM, van der Schouw YT (2009) A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis 19:504–510. doi:10.1016/j.numecd.2008.10.004

    Article  CAS  Google Scholar 

  12. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MHJ, van der Meer IM, Hofman A, Witteman JCM (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 134:3100–3105

    CAS  Google Scholar 

  13. Yamaguchi M (2006) Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. Yakugaku Zasshi 126:1117–1137. doi:10.1248/yakushi.126.1117

    Article  CAS  Google Scholar 

  14. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Kavanagh J (2011) The effect of amino-acids and glycerol addition on mk-7 production. In: Proc. world congress on engineering and computer science, vol II, 19–21 October, San Francisco

  15. Goodman SR, Marrs BL, Narconis RJ, Olson RE (1976) Isolation and description of a menaquinone mutant from Bacillus licheniformis. J Bacteriol 125:282–289

    CAS  Google Scholar 

  16. Wu W-J, Ahn B-Y (2011) Improved menaquinone (vitamin k2) production in Cheonggukjang by optimization of the fermentation conditions. Food Sci Biotechnol 20:1585–1591. doi:10.1007/s10068-011-0219-y

    Article  CAS  Google Scholar 

  17. Singh R, Puri A, Panda BP (2015) Development of menaquinone-7 enriched nutraceutical: inside into medium engineering and process modeling. J Food Sci Technol 52:5212–5219. doi:10.1007/s13197-014-1600-7

    Article  CAS  Google Scholar 

  18. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. doi:10.1016/S1369-703X(02)00121-3

    Article  CAS  Google Scholar 

  19. Ikeda H, Doi Y (1990) A vitamin-K2-binding factor secreted from Bacillus subtilis. Eur J Biochem 192:219–224. doi:10.1111/j.1432-1033.1990.tb19218.x

    Article  CAS  Google Scholar 

  20. Mahdinia E, Demirci A (2017) Strain and plastic composite support (PCS) selection for vitamin K (menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 40:1507–1517. doi:10.1007/s00449-017-1807-x

    Article  CAS  Google Scholar 

  21. Berenjian A, Chan NL-C, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F (2013) Effect of biofilm formation by Bacillus subtilis natto on menaquinone-7 biosynthesis. Mol Biotechnol 54:371–378. doi:10.1007/s12033-012-9576-x

    Article  CAS  Google Scholar 

  22. Ercan D, Demirci A (2013) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 8551:1–14. doi:10.3109/07388551.2013.793170

    Google Scholar 

  23. Demirci A, Pongtharangkul T, Pometto III AL (2007) Applications of biofilm reactors for production of value-added products by microbial fermentation. Blackwell Publishing and The Institude of Food Technologists, Iowa

    Google Scholar 

  24. Kuchma SL, O’Toole GA (2000) Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11:429–433. doi:10.1016/S0958-1669(00)00123-3

    Article  CAS  Google Scholar 

  25. Ercan D, Demirci A (2013) Production of human lysozyme in biofilm reactor and optimization of growth parameters of Kluyveromyces lactis K7. Appl Microbiol Biotechnol 97:6211–6221. doi:10.1007/s00253-013-4944-4

    Article  CAS  Google Scholar 

  26. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, Kavanagh J, Dehghani F (2011) Efficient media for high menaquinone-7 production: response surface methodology approach. N Biotechnol 28:665–672. doi:10.1016/j.nbt.2011.07.007

    Article  CAS  Google Scholar 

  27. Ho KG, Pometto ALI, Hinz PN, Dickson JS, Demirci A (1997) Ingredient selection for plastic composite supports for L-(1)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol 63:2516–2523

    CAS  Google Scholar 

  28. Ercan D, Demirci A (2014) Enhanced human lysozyme production in biofilm reactor by Kluyveromyces lactis K7. Biochem Eng J 92:2–8. doi:10.1016/j.bej.2014.04.013

    Article  CAS  Google Scholar 

  29. Izmirlioglu G, Demirci A (2016) Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 181:643–651. doi:10.1016/j.fuel.2016.05.047

    Article  CAS  Google Scholar 

  30. Rahimi M, Zhu L, Kowalski KL, Zhu X, Gorski CA, Hickner MA, Logan BE (2017) Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane. J Power Sources 342:956–963. doi:10.1016/j.jpowsour.2017.01.003

    Article  CAS  Google Scholar 

  31. Rahimi M, Schoener Z, Zhu X, Zhang F, Gorski CA, Logan BE (2017) Removal of copper from water using a thermally regenerative electrodeposition battery. J Hazard Mater 322:551–556. doi:10.1016/j.jhazmat.2016.10.022

    Article  CAS  Google Scholar 

  32. Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S (2001) Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng 91:16–20. doi:10.1016/S1389-1723(01)80104-3

    Article  CAS  Google Scholar 

  33. Lindgren V, Rutberg L (1974) Glycerol metabolism in Bacillus subtilis: gene-enzyme relationships. J Bacteriol 119:431–442

    CAS  Google Scholar 

  34. Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S (2001) Efficient production of menaquinone (vitamin K2) by a menadione-resistant mutant of Bacillus subtilis. J Ind Microbiol Biotechnol 26:115–120. doi:10.1038/sj.jim.7000089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded in-part by the Pennsylvania Agricultural Experiment Station. The authors thank the Statistical Consulting Center at The Pennsylvania State University for their support in providing useful consultation for data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Demirci.

Additional information

Chemical compound studied in this article: Menaquinone-7 (PubChem CID: 5287554); glycerol (PubChem CID: 753); glucose (PubChem CID: 79025); dipotassium hydrogen phosphate (PubChem CID: 24450); sulfuric acid (PubChem CID: 1118); sodium hydroxide (PubChem CID: 14798); n-hexane (PubChem CID: 8058); 2-propanol (PubChem CID: 3776); methanol (PubChem CID: 887).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdinia, E., Demirci, A. & Berenjian, A. Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (Menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 41, 195–204 (2018). https://doi.org/10.1007/s00449-017-1857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1857-0

Keywords

Navigation