Skip to main content
Log in

Immobilization of CALB on lysine-modified magnetic nanoparticles: influence of the immobilization protocol

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Magnetic biocatalysts offer enormous advantages over traditional ones. Their ability to be isolated by means of a magnet, in combination with their extensive reuse possibilities, makes them highly attractive and competitive from the commercial point of view. In this work, magnetic biocatalysts were prepared by immobilization of Candida antarctica Lipase B (E.C. 3.1.1.3, CALB) on magnetite–lysine nanoparticles. Two methodologies were explored tending to find the optimal biocatalyst in terms of its practical implementation: I—physical adsorption of CALB followed by cross-linking, and II—covalent coupling of the lipase on the nanoparticles surface. Both procedures involved the use of glutaraldehyde (GLUT) as cross-linker or coupling agent, respectively. A range of GLUT concentrations was evaluated in method I and the optimum one, in terms of efficiency and operational stability, was chosen to induce the covalent linkage CALB-support in method II. The chosen test reaction was solvent-free ethyl oleate synthesis. Method I produced operationally unstable catalysts that deactivated totally in four to six cycles. On the other hand, covalently attached CALB (method II) preserved 60% of its initial activity after eight cycles and also retained 90% of its initial activity along 6 weeks in storage. CALB immobilization by covalent linkage using controlled GLUT concentration appears as the optimum methodology to asses efficient and stable biocatalysts. The materials prepared within this work may be competitive with commercially available biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu L, Wu S, Xu Z et al (2016) Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens Bioelectron 80:59–66

    Article  CAS  Google Scholar 

  2. Yuce-Dursun B, Cigil AB, Dongez D et al (2016) Preparation and characterization of sol–gel hybrid coating films for covalent immobilization of lipase enzyme. J Mol Catal B Enzym 127:18–25

    Article  CAS  Google Scholar 

  3. Lv JS, Liu XY, Xu JX et al (2013) Preparation and properties of adsorption material from corn stalks core when used for enzyme immobilization and the subsequent activities of the adsorbed enzymes. Ind Crops Prod 50:787–796

    Article  CAS  Google Scholar 

  4. García-García MI, Sola-Carvajal A, Sánchez-Carrón G et al (2011) New stabilized FastPrep-CLEAs for sialic acid synthesis. Bioresour Technol 102:6186–6191

    Article  Google Scholar 

  5. Santos JCS dos, Barbosa O, Ortiz C et al (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7:2413–2432

    Article  Google Scholar 

  6. Bezerra RM, Neto DMA, Galvão WS et al (2017) Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochem Eng J 125:104–115

    Article  CAS  Google Scholar 

  7. Cipolatti EP, Valério A, Henriques RO et al (2016) Nanomaterials for biocatalyst immobilization—state of the art and future trends. RSC Adv 6:104675–104692

    Article  CAS  Google Scholar 

  8. Liu X, Chen X, Li Y et al (2012) Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Interfaces 4:5169–5178

    Article  CAS  Google Scholar 

  9. Sui Y, Cui Y, Nie Y et al (2012) Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Colloids Surf B Biointerfaces 93:24–28

    Article  CAS  Google Scholar 

  10. Swarnalatha V, Aluri Esther R, Dhamodharan R (2013) Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support. J Mol Catal B Enzym 96:6–13

    Article  CAS  Google Scholar 

  11. Durdureanu-Angheluta A, Ignat ME, Maier SS et al (2014) Lipolytic biocatalyst based on recyclable magnetite-polysiloxane nanoparticles. Appl Surf Sci 292:898–905

    Article  CAS  Google Scholar 

  12. Meng X, Xu G, Zhou Q-L et al (2014) Highly efficient solvent-free synthesis of 1,3-diacylglycerols by lipase immobilised on nano-sized magnetite particles. Food Chem 143:319–324

    Article  CAS  Google Scholar 

  13. Reis P, Holmberg K, Watzke H et al (2009) Lipases at interfaces: a review. Adv Colloid Interface Sci 147:237–250

    Article  Google Scholar 

  14. Villalba M, Verdasco-Martín CM, dos Santos JCS et al (2016) Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction. Enzyme Microb Technol 90:35–44

    Article  CAS  Google Scholar 

  15. Manoel EA, Ribeiro MFP, dos Santos JCS et al (2015) Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia: application to the kinetic resolution of myo-inositol derivatives. Process Biochem 50:1557–1564

    Article  CAS  Google Scholar 

  16. Lozano P, De Diego T, Carrie D et al (2003) Lipase catalysis in ionic liquids and supercritical carbon dioxide at 150 °C. Biotechnol Prog 19:380–382

    Article  CAS  Google Scholar 

  17. Lozano P, De Diego T, Carrié D et al (2001) Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 23:1529–1533

    Article  CAS  Google Scholar 

  18. Nicolás P, Lassalle VL, Ferreira ML (2015) About the role of typical spacer/crosslinker on the design of efficient magnetic biocatalysts based on nanosized magnetite. J Mol Catal B Enzym 122:296–304

    Article  Google Scholar 

  19. José C, Bonetto RD, Gambaro LA et al (2011) Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol–aqueous media. J Mol Catal B Enzym 71:95–107

    Article  Google Scholar 

  20. Nicolás P, Lassalle V, Ferreira ML (2014) Development of a magnetic biocatalyst useful for the synthesis of ethyloleate. Bioprocess Biosyst Eng 37:585–591

    Article  Google Scholar 

  21. Gotor-Fernández V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812

    Article  Google Scholar 

  22. Khan NR, Rathod VK (2015) Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem 50:1793–1806

    Article  CAS  Google Scholar 

  23. Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS (1992) Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. BioChemistry 31:1532–1541

    Article  CAS  Google Scholar 

  24. Manoel EA, dos Santos JCS, Freire DMG et al (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57

    Article  CAS  Google Scholar 

  25. Cao L (2006) Carrier-bound immobilized enzymes: principles, application and design, Wiley, Weinheim

    Google Scholar 

  26. Talbert JN, Wang LS, Duncan B et al (2014) Immobilization and stabilization of lipase (CaLB) through hierarchical interfacial assembly. Biomacromolecules 15:3915–3922

    Article  CAS  Google Scholar 

  27. Ziegler-Borowska M, Siódmiak T, Chełminiak D et al (2014) Magnetic nanoparticles with surfaces modified with chitosan–poly[N-benzyl-2-(methacryloxy)-N,N-dimethylethanaminium bromide] for lipase immobilization. Appl Surf Sci 288:641–648

    Article  CAS  Google Scholar 

  28. Kanimozhi S, Perinbam K (2013) Synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and its application in immobilization of lipase from Pseudomonas fluorescens Lp1. Mater Res Bull 48:1830–1836

    Article  CAS  Google Scholar 

  29. Cui Y, Li Y, Yang Y et al (2010) Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. J Biotechnol 150:171–174

    Article  CAS  Google Scholar 

  30. Bezbradica DI, Mateo C, Guisan JM (2014) Novel support for enzyme immobilization prepared by chemical activation with cysteine and glutaraldehyde. J Mol Catal B Enzym 102:218–224

    Article  CAS  Google Scholar 

  31. Zhong H, Fang Z, Zou B et al (2013) Studies on the lipase-catalyzed esterification of alkyl oleates in solvent-free systems. J Mol Catal B Enzym 90:114–117

    Article  CAS  Google Scholar 

  32. Llerena-Suster CR, Briand LE, Morcelle SR (2014) Analytical characterization and purification of a commercial extract of enzymes: a case study. Colloids Surf B Biointerfaces 121:11–20

    Article  CAS  Google Scholar 

  33. Nicolás P, Lassalle VL, Ferreira ML (2016) Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford Method. Enzyme Microb Technol 97:97–103

    Article  Google Scholar 

  34. Azcona P, Zysler R, Lassalle V (2016) Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications. Colloids Surf A Physicochem Eng Asp 504:320–330

    Article  CAS  Google Scholar 

  35. Foresti ML, Ferreira ML (2005) Frequent analytical/experimental problems in lipase-mediated synthesis in solvent-free systems and how to avoid them. Anal Bioanal Chem 381:1408–1425

    Article  CAS  Google Scholar 

  36. Foresti ML, Pedernera M, Bucalá V, Ferreira ML (2007) Multiple effects of water on solvent-free enzymatic esterifications. Enzyme Microb Technol 41:62–70

    Article  CAS  Google Scholar 

  37. Metzler DE (2001) Biochemistry: the chemical reactions of living cells. Elsevier, Amsterdam

    Google Scholar 

  38. Nicolás P, Saleta M, Troiani H et al (2013) Preparation of iron oxide nanoparticles stabilized with biomolecules: experimental and mechanistic issues. Acta Biomater 9:4754–4762

    Article  Google Scholar 

  39. Shu G, Chen H, Zhang Q, Dang Y (2013) The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized β-galactosidase on chitosan bead. Adv J Food Sci Technol 5:932–935

    Article  Google Scholar 

  40. Dinçer A, Becerik S, Aydemir T (2012) Immobilization of tyrosinase on chitosan–clay composite beads. Int J Biol Macromol 50:815–820

    Article  Google Scholar 

  41. Liu K, Zhao G, He B et al (2012) Immobilization of pectinase and lipase on macroporous resin coated with chitosan for treatment of whitewater from papermaking. Bioresour Technol 123:616–619

    Article  CAS  Google Scholar 

  42. Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R (2012) Versatility of glutaraldehyde to immobilize lipases: effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochem 47:1220–1227

    Article  CAS  Google Scholar 

  43. Monsan P (1978) Optimization of glutaraldehyde activation of a support for enzyme immobilization. J Mol Catal 3:371–384

    Article  CAS  Google Scholar 

  44. López-Gallego F, Betancor L, Mateo C et al (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119:70–75

    Article  Google Scholar 

  45. Hua L, Sun Z-H, Zheng P, Xu Y (2004) Biocatalytic resolution of dl-pantolactone by glutaraldehyde cross-linked cells of Fusarium moniliforme CGMCC 0536. Enzyme Microb Technol 35:161–166

    Article  CAS  Google Scholar 

  46. Zhang W-W, Yang X-L, Jia J-Q et al (2015) Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. J Mol Catal B Enzym 115:83–89

    Article  CAS  Google Scholar 

  47. Guauque Torres MP, Foresti ML, Ferreira ML (2013) Effect of different parameters on the hydrolytic activity of cross-linked enzyme aggregates (CLEAs) of lipase from Thermomyces lanuginosa. Biochem Eng J 72:18–23

    Article  Google Scholar 

  48. Guauque Torres MP, Foresti ML, Ferreira ML (2014) CLEAs of Candida antarctica lipase B (CALB) with a bovine serum albumin (BSA) cofeeder core: Study of their catalytic activity. Biochem Eng J 90:36–43

    Article  CAS  Google Scholar 

  49. Lage FAP, Bassi JJ, Corradini MCC et al (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Technol 84:56–67

    Article  CAS  Google Scholar 

  50. Walt DR, Agayn VI (1994) The chemistry of enzyme and protein immobilization with glutaraldehyde. TrAC Trends Anal Chem 13:425–430

    Article  CAS  Google Scholar 

  51. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802

    CAS  Google Scholar 

  52. Velu N, Divakar K, Nandhinidevi G, Gautam P (2012) Lipase from Aeromonas caviae AU04: isolation, purification and protein aggregation. Biocatal Agric Biotechnol 1:45–50

    CAS  Google Scholar 

  53. Betancor L, López-Gallego F, Hidalgo A et al (2006) Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol 39:877–882

    Article  CAS  Google Scholar 

  54. Fernández-Lorente G, Palomo JM, Mateo C et al (2006) Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules 7:2610–2615

    Article  Google Scholar 

  55. Barbosa O, Ortiz C, Berenguer-Murcia Á et al (2015) Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 33:435–456

    Article  CAS  Google Scholar 

  56. Gunda NSK, Singh M, Norman L et al (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305:522–530

    Article  CAS  Google Scholar 

  57. Silva JA, Macedo GP, Rodrigues DS et al (2012) Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem Eng J 60:16–24

    Article  CAS  Google Scholar 

  58. dos Santos P, Rezende CA, Martinez J (2016) Activity of immobilized lipase from Candida antarctica (lipozyme 435) and its performance on the esterification of oleic acid in supercritical carbon dioxide. J Supercrit Fluids 107:170–178

    Article  Google Scholar 

  59. Jiang Y, Zheng P, Zhou L et al (2016) Immobilization of lipase in hierarchically ordered macroporous/mesoporous silica with improved catalytic performance. J Mol Catal B Enzym 130:96–103

    Article  CAS  Google Scholar 

  60. Ajmal M, Fieg G, Keil F (2016) Analysis of process intensification in enzyme catalyzed reactions using ultrasound. Chem Eng Process Process Intensif 110:106–113

    Article  CAS  Google Scholar 

  61. dos Santos JCS, Bonazza HL, de Matos LJBL et al (2017) Immobilization of CALB on activated chitosan: application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol Reports 14:16–26

    Article  Google Scholar 

  62. José C, Austic GB, Bonetto RD et al (2013) Investigation of the stability of Novozym® 435 in the production of biodiesel. Catal Today 213:73–80

    Article  Google Scholar 

  63. Foresti ML, Ferreira ML (2007) Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme Microb Technol 40:769–777

    Article  CAS  Google Scholar 

  64. Sun J, Jiang Y, Zhou L, Gao J (2010) Immobilization of Candida antarctica lipase B by adsorption in organic medium. N Biotechnol 27:53–58

    Article  CAS  Google Scholar 

  65. Toledo MV, José C, Collins SE et al (2012) Esterification of R/S-ketoprofen with 2-propanol as reactant and solvent catalyzed by Novozym® 435 at selected conditions. J Mol Catal B Enzym 83:108–119

    Article  CAS  Google Scholar 

  66. Séverac E, Galy O, Turon F et al (2011) Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. Enzyme Microb Technol 48:61–70

    Article  Google Scholar 

  67. Ngo TPN, Li A, Tiew KW, Li Z (2013) Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol 145:233–239

    Article  CAS  Google Scholar 

  68. Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi M (2017) Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy 101:593–602

    Article  CAS  Google Scholar 

  69. Babaki M, Yousefi M, Habibi Z et al (2015) Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. Biochem Eng J 101:23–31

    Article  CAS  Google Scholar 

  70. Fedosov SN, Brask J, Pedersen AK et al (2013) Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B. J Mol Catal B Enzym 85–86:156–168

    Article  Google Scholar 

  71. Ortega-Requena S, Bódalo-Santoyo A, Bastida-Rodríguez J et al (2014) Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochem Eng J 84:91–97

    Article  CAS  Google Scholar 

  72. Ćorović M, Milivojević A, Carević M et al (2017) Batch and semicontinuous production of l-ascorbyl oleate catalyzed by CALB immobilized onto Purolite® MN102. Chem Eng Res Des 126:161–171

    Article  Google Scholar 

  73. Ravelo M, Fuente E, Blanco Á et al (2015) Esterification of glycerol and ibuprofen in solventless media catalyzed by free CALB: kinetic modelling. Biochem Eng J 101:228–236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from CONICET (Argentina) and the economic support from PICT 2010-0788 (ANPCyT, Argentina), and the PGI N°24/ZQ09 (UNS, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Nicolás.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolás, P., Lassalle, V. & Ferreira, M.L. Immobilization of CALB on lysine-modified magnetic nanoparticles: influence of the immobilization protocol. Bioprocess Biosyst Eng 41, 171–184 (2018). https://doi.org/10.1007/s00449-017-1855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1855-2

Keywords

Navigation