Skip to main content
Log in

Experimental studies and two-dimensional modelling of a packed bed bioreactor used for production of galacto-oligosaccharides (GOS) from milk whey

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present study, extensive experimental investigations and detailed theoretical analysis of a two-dimensional packed bed bioreactor, employed for the production of galacto-oligosaccharides (GOS) from milk whey were performed. Model equations, in one- and two-dimensions, capable of predicting the substrate concentration distribution in the bioreactor were developed by coupling mass balance equation with appropriate velocity distribution equation and solved numerically. Validation of the proposed model equations was done by a set of experimental data obtained from the bioreactor. The effects of reactor to catalyst particle diameter ratio (d t/d p), feed flowrate (10−6–10−9 m3 s−1), and initial lactose concentration (50–200 kg m−3) on substrate concentration distribution were investigated in detail. While, the distribution of substrate concentration in axial direction was independent of d t/d p, it was observed that for d t/d p <40, significant radial concentration distribution existed. It was further observed that the substrate conversion and product yield obtained experimentally showed an excellent agreement (97 ± 2 %) with the results predicted by the two-dimensional model equation, whereas, the results predicted by the one-dimensional model equation did not lie within the desired confidence level (<90 %). The results were confirmed by both curve fitting and statistical analysis. The prediction of substrate concentration distribution in axial and radial directions using the developed two-dimensional model equation is necessary for computing the bioreactor volume to achieve the desired GOS yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Area normal to the direction of flow (m2)

A 1 :

First constant in velocity distribution equation

A 2 :

Second constant in velocity distribution equation

A 3 :

Third constant in velocity distribution equation

B :

Fourth constant in velocity distribution equation

C A :

Concentration of lactose (kg m−3)

C A0 :

Inlet lactose concentration (kg m−3)

CE0 :

Concentration of enzyme (kg m−3)

d p :

Diameter of catalyst pellet (m)

d t :

Diameter of the fixed bed bioreactor (m)

(D e)L :

Effective axial diffusivity (m2 s−1)

(D e)R :

Effective radial diffusivity (m2 s−1)

kcat :

Specific reaction rate constant (s−1)

K m :

Michaelis–Menten constant (kg m−3)

N A :

Mass flux (kg m−2 s−1)

(Pe)L :

Axial Peclet number

(Pe)R :

Radial Peclet number

r :

Radial distance (m)

R :

Radius of fixed bed bioreactor (m)

\( r^{*} \) :

Dimensionless radial distance

r A :

Rate of depletion of substrate lactose (kg m−3 s−1)

u(r):

Axial velocity as a function of radial distance (m s−1)

\( u(r)^{*} \) :

Dimensionless radial velocity

u c :

Superficial velocity (m s−1)

x A :

Fractional conversion of lactose

x i, exp :

Conversion (experimental) at a particular axial position i

x i, simu :

Conversion (simulated) at a particular axial position i

\( x_{i}^{k} \) :

Conversion (simulated) after kth iteration

\( x_{i}^{k + 1} \) :

Conversion (simulated) after (k + 1)th iteration

F (\( x_{i}^{k} \)):

Nonlinear function of lactose conversion at a particular axial position i for any radial position

z :

Axial distance (m)

References

  1. Hsu CA, Lee SL, Chou CH (2007) Enzymatic production of galactooligosaccharides by β-galactosidase from bifidobacterium longum BCRC 15708. J Agric Food Chem 55:2225–2230

    Article  CAS  Google Scholar 

  2. Kosseva MR (2013) Use of immobilized biocatalyst for valorization of whey lactose. In: Kosseva MR, Webb C (eds) Food industry wastes assessment and recuperation of commodities. Academic Press, San Diego

    Google Scholar 

  3. Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Recent advances refining galactooligosaccharide production from lactose. Food Chem 121:307–318

    Article  CAS  Google Scholar 

  4. Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ (2014) Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem 145:388–394

    Article  CAS  Google Scholar 

  5. Sen D, Sarkar A, Das S, Chowdhury R, Bhattacharjee C (2012) Batch hydrolysis and rotating disc membrane bioreactor for the production of galacto-oligosaccharides: a comparative study. Ind Eng Chem Res 51:10671–10681

    Article  CAS  Google Scholar 

  6. Lopez-Leiva MH, Guzman M (1995) Formation of oligosaccharides during enzymatic hydrolysis of milk whey permeates. Process Biochem 30:757–762

    Article  CAS  Google Scholar 

  7. Palai T, Mitra S, Bhattacharya PK (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114:418–423

    Article  CAS  Google Scholar 

  8. Boon MA, Janssen AEM, van’t Riet K (1999) Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β-galactosidase from Bacillus circulans. Biotechnol Bioeng 64:558–567

    Article  CAS  Google Scholar 

  9. Boon MA, Janssen AEM, van’t Riet K (2000) Effect of temperature and enzyme origin on the enzymatic synthesis of oligo-saccharides. Enzyme Microb Technol 26:271–281

    Article  CAS  Google Scholar 

  10. Iwasaki K, Nakajima M, Nakao S (1994) Galacto-oligosaccharide production from lactose by an enzymatic batch reaction using β-galactosidase. Process Biochem 31:69–76

    Article  Google Scholar 

  11. Gosling A, Stevens G, Barber A, Kentish S, Gras S (2011) Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from Bacillus circulans. J Agric Food Chem 59:3366–3372

    Article  CAS  Google Scholar 

  12. Jorgensen F, Hansen OC, Stougaard P (2001) High-efficiency synthesis of oligosaccharides with a truncated β-galactosidase from Bifidobacteriumbifidum. Appl Microbiol Biotechnol 57:647–652

    Article  CAS  Google Scholar 

  13. Rodriguez-Collinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 60:6391–6398

    Article  CAS  Google Scholar 

  14. Sen P, Nath A, Bhattacharjee C, Chowdhury R, Bhattacharya P (2014) Process engineering studies of free and micro-encapsulated β-galactosidase in batch and packed bed bioreactors for production of galactooligosaccharides. Biochem Eng J 90:59–72

    Article  CAS  Google Scholar 

  15. Neri D, Balcão VM, Costa RS, Isabel RCAP, Ferreira EMFC, Torres DPM, Rodrigues LRM, Carvalho LB Jr, Teixeir JA (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115:92–99

    Article  CAS  Google Scholar 

  16. Albayrak N, Yang S (2002) Immobilization of Aspergillus oryzae β-galactosidase on tosylated cotton cloth. Enzyme Microb Technol 31:371–383

    Article  CAS  Google Scholar 

  17. Albayrak N, Yang S (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77:8–19

    Article  CAS  Google Scholar 

  18. Nichele V, Signoretto M, Ghedini E (2011) β-Galactosidase entrapment in silica gel matrices for a more effective treatment of lactose intolerance. J Mol Catal B Enzyme 71:10–15

    Article  CAS  Google Scholar 

  19. Freitas FF, Marquez LDS, Ribeiro GP, Brandao GC, Cardoso VL, Ribeiro EJ (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 58–59:33–38

    Article  CAS  Google Scholar 

  20. Vieira DC, Lima LN, Mendes AA, Adriano WS, Giordano RC, Giordano RLC, Tardioli PW (2013) Hydrolysis of lactose in whole milk catalyzed by β-galactosidase from Kluyveromyces fragilis immobilized on chitosan-based matrix. Biochem Eng J 81:54–64

    Article  CAS  Google Scholar 

  21. Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Synthesis of galacto-oligosachharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem 46:245–252

    Article  CAS  Google Scholar 

  22. Neri D, Balcão VM, Cardoso SM, Silva AMS, Domingues MRM, Torres DPM, Rodrigues LRM, Carvalho LB Jr, Teixeira JAC (2011) Characterization of galactooligosachharides produced by β-galactosidase immobilized onto magnetized Dacron. Int Dairy J 21:172–178

    Article  CAS  Google Scholar 

  23. Gaur R, Pant H, Jain R, Khare SK (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem 97:426–430

    Article  CAS  Google Scholar 

  24. Lu L, Xu S, Zhao R, Zhang D, Li Z, Li Y, Xiao M (2012) Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose. Bioresour Technol 116:327–333

    Article  CAS  Google Scholar 

  25. Haider T, Husain Q (2009) Hydrolysis of milk/whey lactose by β-galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chem Eng Process Process Intensif 48:576–580

    Article  CAS  Google Scholar 

  26. Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β-galactosidase. Food Bioprod Process 90:351–359

    Article  CAS  Google Scholar 

  27. Klein MP, Fallavena LP, da Schöffer JN, Ayub MAZ, Rodrigues RC, Ninow JL, Hertz PF (2013) High stability of immobilized β-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr Polym 95:465–470

    Article  CAS  Google Scholar 

  28. Nakkharat P, Haltrich D (2007) β-Galactosidase from Talaromyces thermophilus immobilized on to Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor. World J Microbiol Biotechnol 23:759–764

    Article  CAS  Google Scholar 

  29. Sheu DC, Li SY, Duan KJ, Chen CW (1998) Production of galactooligosaccharides by β-galactosidase immobilized on glutaraldehyde-treated chitosan beads. Biotechnol Techn 12:273–276

    Article  CAS  Google Scholar 

  30. Akpan E, Akande A, Aboudheir A, Ibrahim H, Idem R (2007) Experimental, kinetic and 2-D reactor modeling for simulation of the production of hydrogen by the catalytic reforming of concentrated crude ethanol (CRCCE) over a Ni-based commercial catalyst in a packed-bed tubular reactor. Chem Eng Sci 62:3112–3126

    Article  CAS  Google Scholar 

  31. Merrill LS Jr, Hamrin CE Jr (1970) Conversion and temperature profiles for complex reactions in laminar and plug flow. AIChE J 16:194–198

    Article  CAS  Google Scholar 

  32. Mousazadeh F, van Den Akker HEA, Mudde RF (2013) Direct numerical simulation of an exothermic gas-phase reaction in a packed bed with random particle distribution. Chem Eng Sci 100:259–265

    Article  CAS  Google Scholar 

  33. Masmoudi MA, Sahraoui M, Grioui N, Halouani K (2014) 2-D modeling of thermo-kinetics coupled with heat and mass transfer in the reduction zone of a fixed bed downdraft biomass gasifier. Renew Energy 66:288–298

    Article  CAS  Google Scholar 

  34. Lerou JJ, Froment GF (1977) Velocity, temperature and conversion profiles in fixed bed catalytic reactors. Chem Eng Sci 32:853–861

    Article  CAS  Google Scholar 

  35. Krause P, Fieg G (2011) Experiment based model development for enzymatic hydrolysis in a packed-bed reactor with biphasic reactant flow. Chem Eng Sci 66:4838–4850

    Article  CAS  Google Scholar 

  36. Delmas H, Froment GF (1988) A simulation model accounting for structural radial nonuniformities in fixed bed reactors. Chem Eng Sci 43:2281–2287

    Article  CAS  Google Scholar 

  37. Smith JM (1970) Chemical engineering kinetics. McGraw-Hill, New York

    Google Scholar 

  38. Blanch HW, Clark DS (1996) Biochemical engineering. CRC Press, New York

    Google Scholar 

  39. Schwartz CE, Smith JM (1953) Flow distribution in packed beds. Ind Eng Chem Res 45:1209–1218

    Article  CAS  Google Scholar 

  40. Kufner R, Hofman H (1990) Implementation of radial porosity and velocity distribution in a reactor model for heterogenous catalytic gasphase reactions (Torus-Model). Chem Eng Sci 45:2141–2146

    Article  Google Scholar 

  41. Ahmed M, Fahien RW (1980) Tubular reactor design-I two dimensional model. Chem Eng Sci 35:889–895

    Article  CAS  Google Scholar 

  42. Godini HR, Xiao S, Kim M, Holst N, Jaso S, Gorke O, Steinbach J, Wozny G (2014) Experimental and model-based analysis of membrane reactor performance for methane oxidative coupling: effect of radial heat and mass transfer. J Ind Eng Chem 20:1993–2002

    Article  CAS  Google Scholar 

  43. Constantinides A, Mostoufi N (1999) Numerical methods for chemical engineers with MATLAB applications. NJ Prentice Hall PTR, New Jersey

    Google Scholar 

  44. Gupta SK (1995) Numerical methods for engineers. New Age, New Delhi

    Google Scholar 

  45. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  46. Mateo C, Monti R, Pessela BCC, Fuentes M, Torres R, Guisan JM, Fernandez-Lafuente R (2004) Immobilization of lactose from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20:1259–1262

    Article  CAS  Google Scholar 

  47. Jovanovic-Malinovska R, Fernandes P, Winkelhausen E, Fonseca L (2012) Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA. Appl Biochem Biotechnol 168:1197–1211

    Article  CAS  Google Scholar 

  48. Feng Y, Chang X, Wang W, Ma R (2000) Artificial cells. Stabilities of immobilized β-galactosidase of Aspergillus sp. AF for the optimal production of galactooligosaccharides from lactose. Blood Subs Biotechnol 38:43–51

    Article  Google Scholar 

  49. Shin HJ, Park JM, Yang JW (1998) Continuous production of galactooligosaccharides from lactose by Bullera singularis β-galactosidase immobilized in chitosan beads. Process Biochem 33:787–792

    Article  CAS  Google Scholar 

  50. Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol 50:188–194

    Article  CAS  Google Scholar 

  51. Dwevedi A, Kayastha AM (2009) Stabilization of β-galactosidase (from Peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. J Agric Food Chem 57:682–688

    Article  CAS  Google Scholar 

  52. Selvarajan E, Mohanasrinivasan V, Devi CS, Doss CGP (2015) Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis. Bioprocess Biosyst Eng. doi:10.1007/s00449-0.15-1407-6

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grants Commission (UGC) UPE Phase II for their financial support to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Bhattacharjee.

Appendix

Appendix

The governing differential Eq. (15a) along with the boundary conditions given by Eqs. (16)–(19) was used for predicting concentration distribution in the axial and the radial directions. The equation was solved by finite difference method through the method of lines outlined as follows:

One chooses N + 1 equispaced finite-difference grid lines, \( r_{1}^{*} ( = 0), \, r_{2}^{*} , \, r_{3}^{*} , \ldots ,r_{N + 1}^{*} ( = R/d_{\text{p}} ) \) with the spacing being \( \Delta r^{*} = (R/d_{\text{p}} )/N \). Here N = 6 and the value of x A at the ith grid line are denoted by \( x_{A} \left( {r_{i}^{*} ,z} \right) = x_{Ai} \left( z \right) \); \( i = 1,2, \ldots N + 1 \). The partial derivatives in r may be written as:

$$ \frac{{\partial x_{A} }}{\partial r*}|_{i} = \frac{{x_{A,i + 1} (z) - x_{A,i - 1} (z)}}{{2\Delta r^{*} }} + O[(\Delta r^{*} )^{2} ] $$
(25)
$$ \frac{{\partial^{2} x_{A} }}{{\partial r*^{2} }}|_{i} = \frac{{x_{A,i + 1} (z) - 2x_{A,i} (z) + x_{A,i - 1} (z)}}{{(\Delta r^{*} )^{2} }} + O[(\Delta r^{*} )^{2} ] $$
(26)

It is implied here that the value of z used for all the x A,i ’s is the same. The residuals can now be equated to zero at the appropriate grid lines for Eq. (15a).

This leads to:

$$ \begin{aligned} \frac{1}{{Pe_{\text{L}} }}\frac{{{\text{d}}^{2} x_{A} }}{{{\text{d}}z^{*2} }} - \frac{{{\text{d}}x_{A} }}{{{\text{d}}z^{*} }} = - \frac{1}{{Pe_{\text{R}} }}\left[ {\frac{{x_{A,i + 1} (z^{*} ) - 2x_{A,i} (z^{*} ) + x_{A,i - 1} (z^{*} )}}{{(\Delta r*)^{2} }} + \frac{1}{{r_{i}^{*} }}\frac{{x_{A,i + 1} (z^{*} ) - x_{A,i - 1} (z^{*} )}}{{2\Delta r^{*} }}} \right] - \hfill \\ {\kern 1pt} {\kern 1pt} \quad \frac{{k_{\text{cat}} C_{E0} (1 - x_{A} )(1 - \varepsilon )d_{p} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A} )} \right]}} \hfill \\ \end{aligned} $$
(27)

where, \( i = 1,2, \ldots N + 1. \)

Here, the velocity profile \( u(r_{i}^{*} ) \) is given by Eq. (10).

At \( r^{*} = r_{1}^{*} \), the boundary condition on x A gives:

$$ \frac{{x_{A,2} (z) - x_{A,0} (z)}}{{2(\Delta r)}} = 0 $$
(28)

where, \( r^{*} = r_{0}^{*} \) is a hypothetical grid line, at which conversion is x A (z). x A (z) can be eliminated by making the residual of the PDE at \( r^{*} = r_{1}^{*} \) equal to zero, which leads to:

$$ \frac{1}{{Pe_{\text{L}} }}\frac{{\partial^{2} x_{A} }}{{\partial z^{*2} }} - \frac{{\partial x_{A} }}{{\partial z^{*} }} = - \frac{1}{{Pe_{\text{R}} }}\left[ {\frac{{\partial^{2} x_{A} }}{{\partial r^{*2} }} + \frac{1}{{r^{*} }}\frac{{\partial x_{A} }}{{\partial r^{*} }}} \right]_{{r^{*} = r_{1}^{*} }} - \frac{{k_{\text{cat}} C_{E0} (1 - x_{A} )(1 - \varepsilon )d_{\text{p}} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A} )} \right]}}|_{{r_{i} = r_{1} }} = 0 $$
(29)

The term \( \frac{1}{{r^{*} }}\frac{{\partial x_{A} }}{{\partial r^{*} }} \) gives 0/0 at r = r 1 = 0. L′Hospital’s rule applied to this term reduces it to \( \frac{{\partial^{2} x_{A} }}{{\partial r^{*2} }} \). Thus, the terms in bracket on the right hand side become \( 2\frac{{\partial^{2} x_{A} }}{{\partial r^{*2} }} \). Using the finite difference form, one gets:

$$ \frac{1}{{Pe_{\text{L}} }}\frac{{{\text{d}}^{2} x_{A,1} }}{{{\text{d}}z^{*2} }} - \frac{{{\text{d}}x_{A,1} }}{{{\text{d}}z^{*} }} = - \frac{1}{{Pe_{\text{R}} }} \left [\frac{{2(x_{A,2} - 2x_{A,1} + x_{A,0} )}}{{(\Delta r^{*2} )}} \right ] - \frac{{k_{\text{cat}} C_{E0} (1 - x_{A,1} )(1 - \varepsilon )d_{\text{p}} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,1} )} \right]}}|_{{r_{i} = r_{1} }} $$
(30)

which upon rearranging becomes:

$$ \frac{1}{{Pe_{\text{L}} }}\frac{{{\text{d}}^{2} x_{A,1} }}{{{\text{d}}z^{*2} }} - \frac{{{\text{d}}x_{A,1} }}{{{\text{d}}z^{*} }} = - \frac{1}{{Pe_{\text{R}} }}\left[ {\frac{{4(x_{A,2} - x_{A,1} )}}{{(\Delta r^{*2} )}}} \right] - \frac{{k_{\text{cat}} C_{E0} (1 - x_{A,1} )(1 - \varepsilon )d_{\text{p}} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,1} )} \right]}}|_{{r_{i} = r_{1} }} $$
(31)

For \( i = 2, \ldots N, \) Eq. (27) reduces to:

$$ \frac{1}{{Pe_{\text{L}} }}\frac{{{\text{d}}^{2} x_{A,i} }}{{{\text{d}}z^{*2} }} - \frac{{{\text{d}}x_{A,i} }}{{{\text{d}}z^{*} }} = - \frac{1}{{Pe_{\text{R}} }}\left[ {\frac{{2(x_{A,i + 1} - 2x_{A,i} + x_{A,i - 1} )}}{{(\Delta r^{*2} )}}} \right] - \frac{{k_{\text{cat}} C_{E0} (1 - x_{A,i} )(1 - \varepsilon )d_{\text{p}} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,i} )} \right]}}|_{{r_{i} = 2, \ldots N}}$$
(32)

At \( r^{*} = r_{N + 1}^{*} = R/d_{\text{p}} \), Eq. (27) becomes:

$$ \frac{1}{{Pe_{\text{L}} }}\frac{{{\text{d}}^{2} x_{A,N + 1} }}{{{\text{d}}z^{*2} }} - \frac{{{\text{d}}x_{A,N + 1} }}{{{\text{d}}z^{*} }} = - \frac{1}{{Pe_{\text{R}} }}\left[ {\frac{{2(x_{A,N + 2} - 2x_{A,N + 1} + x_{A,N} )}}{{(\Delta r^{*2} )}}} \right] - \frac{{k_{\text{cat}} C_{E0} (1 - x_{A,N + 1} )(1 - \varepsilon )d_{\text{p}} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,N + 1} )} \right]}}|_{{r_{i} = r_{N + 1} }} $$
(33)

Because of the no slip boundary condition at the wall, (r N+1 = R), a region very close to the wall has been considered to be r N+1,where the velocity is very small but has a non-zero value.

The set of PDEs represented by Eq. (28) has thus reduced to a set of second order ordinary differential equations under the (ODE-BVPs) in z direction as given by Eqs. (31)–(33). One chooses M + 1 equispaced finite-difference grid points \( z_{1}^{*} ( = 0), \, z_{2}^{*} , \, z_{3}^{*} , \ldots ,z_{M + 1}^{*} ( = L/d_{\text{p}} ) \) with the spacing being \( \Delta z^{*} = \left( {L/d_{\text{p}} } \right)/M \), where M = 19.

For \( r^{*} = r_{1}^{*} \), Eq. (31) may be expressed as:

$$ \frac{1}{{Pe_{\text{L}} }}\frac{{{\text{d}}^{2} x_{A,1} }}{{{\text{d}}z^{*2} }} - \frac{{{\text{d}}x_{A,1} }}{{{\text{d}}z^{*} }} + \frac{1}{{Pe_{\text{R}} }}\left[ {\frac{{4(x_{A,2} - x_{A,1} )}}{{(\Delta r^{*2} )}}} \right] = - \frac{{k_{\text{cat}} C_{E0} (1 - x_{A,1} )(1 - \varepsilon )d_{\text{p}} }}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,1} )} \right]}}|_{{r_{i} = r_{1} = 0}} $$
(34)

At \( z^{*} = 0 \), the boundary condition represented by Eq. (16) reduces to:

$$ u_{c} x_{A,11} = \frac{{(D_{\text{e}} )_{\text{L}} }}{{d_{\text{p}} }}\frac{{{\text{d}}x_{A,11} }}{{{\text{d}}z^{*} }} = \frac{{(D_{\text{e}} )_{\text{L}} }}{{d_{\text{p}} }}\frac{{(x_{A,12} - x_{A,10} )}}{{2\Delta z^{*} }} $$
(35)

Here, in x A,11, the first subscript 1 signifies the radial position \( r_{1}^{*} \) and the second subscript 1 signifies the axial position \( z_{1}^{*} \), corresponding to \( r_{1}^{*} \).

Hence, substituting the boundary condition (35) in equation (34) and rearranging, one gets:

$$ \begin{aligned} \left[ { - \frac{2}{{Pe_{\text{L}} (\Delta z^{*} )^{2} }} - \frac{{2u_{c} d_{\text{p}} }}{{Pe_{\text{L}} D_{\text{eL}} (\Delta z^{*} )}} - \frac{{u_{c} d_{\text{p}} }}{{D_{\text{eL}} }} - \frac{4}{{(\Delta r^{*} )^{2} Pe_{\text{R}} }}} \right]x_{A,11} + \frac{2}{{(\Delta z^{*} )^{2} Pe_{\text{L}} }}x_{A,12} + \frac{4}{{(\Delta r^{*} )^{2} Pe_{\text{R}} }}x_{A,21} = \hfill \\ \quad - \frac{{k_{\text{cat}} C_{E0} (1 - \varepsilon )d_{\text{p}} (1 - x_{A,11} )}}{{u(r)\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,11} )} \right]}} \hfill \\ \end{aligned} $$
(36)

which may be written as:

$$ \begin{aligned} F(x_{A,11} ) = \left[ - \frac{2}{{Pe_{\text{L}} (\Delta z^{*} )^{2} }} - \frac{{2u_{c} d_{\text{p}} }}{{Pe_{\text{L}} D_{\text{eL}} (\Delta z^{*} )}} - \frac{{u_{c} d_{\text{p}} }}{{D_{\text{eL}} }} - \frac{4}{{(\Delta r^{*} )^{2} Pe_{\text{R}} }}\right]x_{A,11} + \frac{2}{{(\Delta z^{*} )^{2} Pe_{\text{L}} }}x_{A,12} + \frac{4}{{(\Delta r^{*} )^{2} Pe_{\text{R}} }}x_{A,21} \hfill \\ {\kern 1pt} {\kern 1pt} \quad + \frac{{k_{\text{cat}} C_{E0} (1 - \varepsilon )d_{\text{p}} (1 - x_{A,11} )}}{{u(r)\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,11} )} \right]}} \hfill \\ \end{aligned} $$
(37)

For \( z_{j}^{*} = z_{2}^{*} , \ldots z_{M}^{*} \) Eq. 34 may be written as:

$$ \begin{aligned} \left[ {\frac{1}{{Pe_{L} (\Delta z*)^{2} }} + \frac{1}{2\Delta z*}} \right]x_{A,1j - 1} + \left[ {\frac{ - 2}{{Pe_{L} (\Delta z*)^{2} }} - \frac{4}{{(\Delta r*)^{2} Pe_{R} }}} \right]x_{A,1j} + \left[ {\frac{1}{{Pe_{L} (\Delta z*)^{2} }} - \frac{1}{2\Delta z*}} \right]x_{A,1j + 1} + \frac{4}{{(\Delta r*)^{2} Pe_{R} }}x_{A,2j} \hfill \\ \quad \quad = \frac{{k_{cat} C_{E0} (1 - \varepsilon )d_{p} (1 - x_{A,1j} )}}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{m} }}{{C_{A0} }} + (1 - x_{A,1j} )} \right]}} \hfill \\ \end{aligned} $$
(38)

At \( z_{i}^{*} = z_{M + 1}^{*} ( = L/d_{\text{p}} ), \) the boundary condition given by Eq. (17) reduces to:

$$ \frac{{x_{A,M + 2} - x_{A,M} }}{{2\Delta z^{*} }} = 0 $$
(39)

which when substituted in equation (38) yields:

$$ \frac{2}{{Pe_{\text{L}} (\Delta z^{*} )^{2} }}x_{A,1M} + \left [ - \frac{2}{{Pe_{\text{L}} (\Delta z^{*} )^{2} }} - \frac{4}{{(\Delta r^{*} )^{2} Pe_{\text{R}} }}\right ]x_{A,1M + 1} + \frac{4}{{(\Delta r^{*} )^{2} Pe_{\text{R}} }}x_{A,2M + 1} = - \frac{{k_{\text{cat}} C_{E0} (1 - \varepsilon )d_{\text{p}} (1 - x_{A,M + 1} )}}{{u(r_{i} )\varepsilon C_{A0} \left[ {\frac{{K_{\text{m}} }}{{C_{A0} }} + (1 - x_{A,M + 1} )} \right]}}|_{{r_{i} = r_{1} }} $$
(40)

Equations identical to (37) can be written for equation (38) and (40) also. The equations can be rearranged in matrix form and written as:

$$ x_{A,ij}^{k + 1} = x_{A,ij}^{k} - \left[ {A\left[ {x_{A,ij}^{k} } \right]} \right]^{ - 1} (F(x_{A,ij}^{k} )) $$
(41)

Here, \( A\left[ {x_{A,ij}^{k} } \right] \) is the Jacobian matrix \( \frac{\partial F}{\partial x} \)

Similarly, the matrix can be constructed for \( i = 2, \ldots N \) and \( j = 1, \ldots M + 1 \) on rearranging Eq. (27), and solved to obtain the substrate conversion in radial and axial directions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Bhattacharjee, C. & Bhattacharya, P. Experimental studies and two-dimensional modelling of a packed bed bioreactor used for production of galacto-oligosaccharides (GOS) from milk whey. Bioprocess Biosyst Eng 39, 361–380 (2016). https://doi.org/10.1007/s00449-015-1516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1516-2

Keywords

Navigation