Skip to main content
Log in

Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jana T, Jana H, Martin J, Jiri H, Ondrej L, Jana K, Vladimir K, Miroslav L, Jana K, Vladan F (2008) Changes of pesticide residues in apples during cold storage. Food Control 19(3):247–256

    Article  Google Scholar 

  2. Akoto O, Andoh H, Darko G, Eshun K, Osei-Fosu P (2013) Health risk assessment of pesticides residue in maize and cowpea from Ejura. Chemosphere 92(1):67–73

    Article  CAS  Google Scholar 

  3. Guardino X, Obiols J, Rosell MG, Farran A, Serra C (1998) Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen-phosphorus detection, high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A 823(1–2):91–96

    Article  CAS  Google Scholar 

  4. Zhao YY, Wang CH, Wendling LA, Pei YS (2013) Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent. J Agric Food Chem 61(31):7446–7452

    Article  CAS  Google Scholar 

  5. Jeanty G, Ghommidh C, Marty JL (2001) Automated detection of chlorpyrifos and its metabolites by a continuous flow system-based enzyme sensor. Anal Chim Acta 436(1):119–128

    Article  CAS  Google Scholar 

  6. Kim YA, Lee EH, Kim KO, Lee YT, Hammock BD, Lee HS (2011) Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal Chim Acta 693(1–2):106–113

    Article  CAS  Google Scholar 

  7. Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Mancl´us JJ (2006) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561(1–2):40–47

    Article  CAS  Google Scholar 

  8. Santos FJ, Galceran MT (2003) Modern developments in gas chromatography-mass spectrometry-based environmental analysis. J Chromatogr A 1000 1–2:125–151

    Google Scholar 

  9. Blasco C, Font G, Picó Y (2006) Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain). Food Control 17(11):841–846

    Article  CAS  Google Scholar 

  10. Hernández-Borges J, Corbella-Tena R, Rodríguez-Delgado MA, García-Montelongo FJ, Havel J (2004) Content of aliphatic hydrocarbons in limpets as a new way for classification of species using artificial neural networks. Chemosphere 54(8):1059–1069

    Article  Google Scholar 

  11. Yin HS, Ai SY, Xu J, Shi WJ, Zhu LS (2009) Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim. J Electroanal Chem 637(1–2):21–27

    Article  CAS  Google Scholar 

  12. Jeong B, Akter R, Han OH, Rhee CK, Rahman MA (2013) Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Anal Chem 85(3):1784–1791

    Article  CAS  Google Scholar 

  13. Zhang J, Lei JP, Xu CL, Ding L, Ju HX (2010) Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal Chem 82(3):1117–1122

    Article  CAS  Google Scholar 

  14. Privett BJ, Shin JH, Sehoenfiseh MH (2008) Electrochemical sensors. Anal Chem 80(12):4499–4517

    Article  CAS  Google Scholar 

  15. Yang YC, Dong SW, Shen T, Jian CX, Chang HJ, Li Y, Zhou JX (2011) Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels. Electrochim Acta 56(17):6021–6025

    Article  CAS  Google Scholar 

  16. Liu S, Xing XR, Yu JH, Lian WJ, Li J, Cui M, Huang JD (2012) A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. Biosens Bioelectron 36(1):186–191

    Article  Google Scholar 

  17. Liu SF, Liu J, Han XP, Cui YN, Wang W (2010) Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA. Biosens Bioelectron 25(7):1640–1645

    Article  CAS  Google Scholar 

  18. Hong NN, Song L, Wang B, Stec AA, Hull TR, Zhan J, Hu Y (2014) Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater Res Bull 49:657–664

    Article  CAS  Google Scholar 

  19. Niu YL, Li RY, Li ZJ, Fang YJ, Liu JK (2013) High-performance supercapacitors materials prepared via in situ growth of NiAl-layered double hydroxide nanoflakes on well-activated graphene nanosheets. Electrochim Acta 94(1):360–366

    CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  21. Dreyer DR, Ruo RS, Bielawski CW (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed 49(49):9336–9344

    Article  CAS  Google Scholar 

  22. Wang Z, Zhang X, Wang JH, Zou LD, Liu ZT, Hao ZP (2013) Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite. J Colloid Interface Sci 396:251–257

    Article  CAS  Google Scholar 

  23. Chon H, Lee S, Son SW, Oh CH, Choo J (2009) Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced raman scattering of hollow gold nanospheres. Anal Chem 81(8):3029–3034

    Article  CAS  Google Scholar 

  24. Hummers S, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  25. Liang HP, Wan LJ, Bai CL, Jiang L (2005) Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J Phys Chem B 109(16):7795–7800

    Article  CAS  Google Scholar 

  26. Zhu HF, Tang PG, Feng YJ, Wang LJ, Li DQ (2012) Intercalation of IR absorber into layered double hydroxides: preparation, thermal stability and selective IR absorption. Mater Res Bull 47(3):532–536

    Article  CAS  Google Scholar 

  27. Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A (2010) Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 79(1):11–16

    Article  CAS  Google Scholar 

  28. Liu T, Su HC, Qu XJ, Ju P, Cui L, Ai SY (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens Actuators B 160(1):1255–1261

    Article  CAS  Google Scholar 

  29. Hua XD, Qian GL, Yang JF, Hu BS, Fan JQ, Qin N, Li G, Wang YY, Liu FQ (2010) Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples. Biosens Bioelectron 26(1):189–194

    Article  CAS  Google Scholar 

  30. Wang K, Liu Q, Dai L, Yan JJ, Ju C, Qiu BJ, Wu XY (2011) A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite. Anal Chim Acta 695(1–2):84–88

    Article  CAS  Google Scholar 

  31. Zamfir LG, Rotariua L, Bala C (2011) A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 26(8):3692–3695

    Article  CAS  Google Scholar 

  32. Prabhakar N, Arora K, Singh SP, Pandey MK, Singh H, Malhotra BD (2007) Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Anal Chim Acta 589(1):6–13

    Article  CAS  Google Scholar 

  33. Moraes FC, Mascaro LH, Machado SAS, Brett CMA (2009) Direct electrochemical determi-nation of carbaryl using a multi-walled carbon nan-otube/cobalt phthalocyanine modified electrode. Talanta 79(5):1406–1411

    Article  CAS  Google Scholar 

  34. Rotariu L, Zamfir LG, Bala C (2012) A rational design of the multiwalled carbon nanotube-7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Anal Chim Acta 748:81–88

    Article  CAS  Google Scholar 

  35. Song YH, Zhang M, Wang L, Wan LL, Xiao XP, Ye SH, Wang JR (2011) A novel biosensor based on acetylecholinesterase/prussian blue-chitosan modified electrode for detection of carbaryl pesticides. Electrochim Acta 56(21):7267–7271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30972055, 31101286, 31471641), Agricultural Science and Technology Achievements Transformation Fund Projects of the Ministry of Science and Technology of China (No. 2011GB2C60020), Special project of independent innovation of Shandong Province (2014CGZH0703) and Shandong Provincial Natural Science Foundation, China (No. Q2008D03, ZR2014CM009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Sun or Xiangyou Wang.

Additional information

L. Qiao and Y. Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Guo, Y., Sun, X. et al. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification. Bioprocess Biosyst Eng 38, 1455–1468 (2015). https://doi.org/10.1007/s00449-015-1388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1388-5

Keywords

Navigation