Skip to main content

Advertisement

Log in

Simultaneous treatment of food-waste recycling wastewater and cultivation of Tetraselmis suecica for biodiesel production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

There is an increasing interest in the use of cultivated microalgae to simultaneously produce biodiesel and remove nutrients from various wastewaters. For this purpose, Tetraselmis suecica was cultivated in flasks and fermenters using diluted food-waste recycling wastewater (FRW). The effect of FRW dilution on T. suecica growth and nutrient removal was initially tested in flasks. The maximal microalgal concentration after 14 days was in medium with a twofold dilution (28.3 × 106 cells/mL) and a fivefold dilution (25.5 × 106 cells/mL). When fivefold diluted medium was used in fermenters, the final dry cell weight of T. suecica was 2.0 g/L. The removal efficiencies of ammonium and phosphate in the fermenters were 99.0 and 52.3 %, respectively. In comparison with the results of previous studies, the growth data of T. suecica in the FRW medium indicate that microalgal cultivation system incorporating removal of nutrients in FRW is feasible at the field level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Commission of the European Communities (CEC) (2006) Towards a future maritime policy for the union: a European vision for the oceans and seas, grean paper, COM 275. CEC, Brussels

    Google Scholar 

  2. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35(2):215–226

    Article  Google Scholar 

  3. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  4. Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-Value compounds-a brief review of recent work. Biotechnol Progr 27(3):597–613

    Article  CAS  Google Scholar 

  5. Radmer RJ, Parker BC (1994) Commercial applications of algae—opportunities and constraints. J Appl Phycol 6(2):93–98

    Article  Google Scholar 

  6. Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763

    Article  CAS  Google Scholar 

  7. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  8. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Article  CAS  Google Scholar 

  9. Yang J, Xu M, Zhang XZ, Hu QA, Sommerfeld M, Chen YS (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  CAS  Google Scholar 

  10. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energ Environ Sci 6(2):426–464

    Article  CAS  Google Scholar 

  11. Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for Simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng-Asce 135(11):1115–1122

    Article  CAS  Google Scholar 

  12. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1(1):20–43

    Article  Google Scholar 

  13. Olguin EJ, Hernandez B, Araus A, Camacho R, Gonzalez R, Ramirez ME, Galicia S, Mercado G (1994) Simultaneous high-biomass protein-production and nutrient removal using spirulina-maxima in sea-water supplemented with anaerobic effluents. World J Microb Biot 10(5):576–578

    Article  CAS  Google Scholar 

  14. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  15. Fabregas J, Herrero C, Cabezas B, Abalde J (1985) Mass-culture and biochemical variability of the marine microalga Tetraselmis-suecica kylin (Butch) with high nutrient concentrations. Aquaculture 49(3–4):231–244

    Article  CAS  Google Scholar 

  16. Yao CH, Ai JN, Cao XP, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  Google Scholar 

  17. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  18. Culkin F, Smith ND (1980) Determination of the concentration of potassium chloride solution having the same electrical conductivity, at 15 °C and infinite frequency, as standard seawater of salinity 35.0000‰ (Chlorinity 19.37394‰), IEEE-JOE OE-5 (1)

  19. Han MJ, Behera SK, Park HS (2012) Anaerobic co-digestion of food waste leachate and piggery wastewater for methane production: statistical optimization of key process parameters. J Chem Technol Biot 87(11):1541–1550

    Article  CAS  Google Scholar 

  20. Seo JY, Heo JS, Kim TH, Joo WH, Crohn DM (2004) Effect of vermiculite addition on compost produced from Korean food wastes. Waste Manage 24(10):981–987

    Article  CAS  Google Scholar 

  21. Shin SG, Han G, Lim J, Lee C, Hwang S (2010) A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res 44(17):4838–4849

    Article  CAS  Google Scholar 

  22. Ji F, Liu Y, Hao R, Li G, Zhou Y, Dong R (2014) Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresour Technol 161:200–207

    Article  CAS  Google Scholar 

  23. Chen M, Tang HY, Ma HZ, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102(2):1649–1655

    Article  CAS  Google Scholar 

  24. Ryu BG, Kim J, Farooq W, Han JI, Yang JW, Kim W (2014) Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour Technol 162:70–79

    Article  CAS  Google Scholar 

  25. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268

    Article  CAS  Google Scholar 

  26. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae. J Phycol 30(6):972–979

    Article  CAS  Google Scholar 

  27. Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11

    Article  CAS  Google Scholar 

  28. Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 102(10):5639–5644

    Article  CAS  Google Scholar 

  29. Luz EB, Manuel M, Juan-Pablo H, Yoav B (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36(12):2941–2948

    Article  Google Scholar 

  30. Yakup N, William JO (1995) Enhanced nutrient removal in high-rate ponds. Wat. Sci. Tech 31(12):33–43

    Article  Google Scholar 

  31. Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 35(1):40–49

    Article  CAS  Google Scholar 

  32. Wang L, Li YC, Chen P, Min M, Chen YF, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628

    Article  CAS  Google Scholar 

  33. Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energ 88(10):3336–3341

    Article  CAS  Google Scholar 

  34. Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 114:567–572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Advanced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woong Kim or Ji-Won Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, SW., Ryu, BG., Nam, K. et al. Simultaneous treatment of food-waste recycling wastewater and cultivation of Tetraselmis suecica for biodiesel production. Bioprocess Biosyst Eng 38, 1393–1398 (2015). https://doi.org/10.1007/s00449-015-1380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1380-0

Keywords

Navigation