Skip to main content
Log in

Large-scale crystallization of proteins for purification and formulation

  • Mini Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Since about 170 years, salts were used to create supersaturated solutions and crystallize proteins. The dehydrating effect of salts as well as their kosmotropic or chaotropic character was revealed. Even the suitability of organic solvents for crystallization was already recognized. Interestingly, what was performed during the early times is still practiced today. A lot of effort was put into understanding the underlying physico-chemical interaction mechanisms leading to protein crystallization. However, it was understood that already the solvation of proteins is a highly complex process not to mention the intricate interrelation of electrostatic and hydrophobic interactions taking place. Although many basic questions are still unanswered, preparative protein crystallization was attempted as illustrated in the presented case studies. Due to the highly variable nature of crystallization, individual design of the crystallization process is needed in every single case. It was shown that preparative crystallization from impure protein solutions as a capture step is possible after applying adequate pre-treatment procedures like precipitation or extraction. Protein crystallization can replace one or more chromatography steps. It was further shown that crystallization can serve as an attractive alternative means for formulation of therapeutic proteins. Crystalline proteins can offer enhanced purity and enable highly concentrated doses of the active ingredient. Easy scalability of the proposed protein crystallization processes was shown using the maximum local energy dissipation as a suitable scale-up criterion. Molecular modeling and target-oriented protein engineering may allow protein crystallization to become part of a platform purification process in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McPherson A (1991) A brief history of protein crystal growth. J Cryst Growth 110:1–10

    CAS  Google Scholar 

  2. Hofmeister F (1888) Zur Lehre von der Wirkung der Salze (2. Mittheilung). Arch Exp Pathol Phar 24:247–260

    Google Scholar 

  3. Hofmeister F (1888) Zur Lehre von der Wirkung der Salze (3. Mittheilung). Arch Exp Pathol Phar 25:1–30

    Google Scholar 

  4. Hofmeister F (1890) Über die Darstellung von krystallisirtem Eieralbumin und die Krystallisirbarkeit colloider Stoffe. Z Physiol Chem 14:165–172

    Google Scholar 

  5. Abel JJ (1926) Crystalline insulin. Proc Natl Acad Sci USA 12:132–136

    CAS  Google Scholar 

  6. Sumner JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441

    CAS  Google Scholar 

  7. Northrop JH (1929) Crystalline pepsin. Science 69:580

    CAS  Google Scholar 

  8. Stanley WM (1935) Isolation of a crystalline protein possessing the properties of tobacco mosaic virus. Science 81:644–645

    CAS  Google Scholar 

  9. Alderton G, Fevold HL (1946) Direct crystallization of lysozyme from egg white and some crystalline salts of lysozyme. J Biol Chem 164:1–5

    CAS  Google Scholar 

  10. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff HPD (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666

    CAS  Google Scholar 

  11. Bragg WF, Perutz MF (1954) The structure of haemoglobin. VI. Fourier projections on the 010 plane. Proc R Soc L A 225:315–329

    CAS  Google Scholar 

  12. Michel H, Oesterhelt D (1980) Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc Natl Acad Sci USA 77:1283–1285

    CAS  Google Scholar 

  13. Harris LJ, Skaletsky E, McPherson A (1995) Crystallization of intact monoclonal antibodies. Proteins 23:285–289

    CAS  Google Scholar 

  14. Harris LJ, Larson SB, Hasel KW, McPherson A (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36:1581–1597

    CAS  Google Scholar 

  15. Saphire EO, Parren PWHI, Panthophlet R et al (2001) Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293:1155–1159

    CAS  Google Scholar 

  16. Saphire EO, Parren PWHI, Barbas CF et al (2001) Crystallization and preliminary structure determination of an intact human immunoglobulin, b12: an antibody that broadly neutralizes primary isolates of HIV-1. Acta Crystallogr D 57:168–171

    CAS  Google Scholar 

  17. McPherson A (1999) Crystallization of Biological Macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  18. Bergfors TM (ed) (1999) Protein Crystallization, Techniques, Strategies, and Tips. International University Line, La Jolla

    Google Scholar 

  19. Ducruix A, Giegé R (2000) Crystallization of nucleic acids and proteins, a practical approach, 2nd edn. Oxford University Press, New York

    Google Scholar 

  20. Rupp B (2010) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Publishing, New York 2010

    Google Scholar 

  21. Sauter C, Lorber B, McPherson A, Giegé R (2012) Crystallization. General methods. In: Arnold E, Himmel DM, Rossmann MG (eds) International tables for crystallography. Volume F: crystallography of biological macromolecules. 2nd edn. Wiley, Chichester, pp 99–121

  22. McPherson A (1985) Crystallization of macromolecules: general principles. Methods Enzymol 114:112–120

    CAS  Google Scholar 

  23. Durbin SD, Feher G (1996) Protein crystallization. Annu Rev Phys Chem 47:171–204

    CAS  Google Scholar 

  24. Wiencek JM (1999) New strategies for protein crystal growth. Annu Rev Biomed Eng 1:505–534

    CAS  Google Scholar 

  25. Kierzek AM, Zielenkiewicz P (2001) Models of protein crystal growth. Biophys Chem 91:1–20

    CAS  Google Scholar 

  26. McPherson A (2004) Introduction to protein crystallization. Methods 34:254–265

    CAS  Google Scholar 

  27. Derewenda ZS (2007) Protein crystallization in drug design: towards a rational approach. Expert Opin Drug Discov 2:1329–1340

    CAS  Google Scholar 

  28. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    CAS  Google Scholar 

  29. Krauss IR, Merlino A, Vergara A, Sica F (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691

    Google Scholar 

  30. Konnert JH, D’Antonio P, Ward KB (1994) Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Crystallogr D 50:603–613

    CAS  Google Scholar 

  31. McPherson A, Malkin AJ, Kuznetsov YG (1995) The science of macromolecular crystallization. Structure 3:759–768

    CAS  Google Scholar 

  32. Yip CM, Brader ML, Frank BH et al (2000) Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy. Biophys J 78:466–473

    CAS  Google Scholar 

  33. Vekilov PG, Alexander JID (2000) Dynamics of layer growth in protein crystallization. Chem Rev 100:2061–2090

    CAS  Google Scholar 

  34. Yau S, Vekilov PG (2001) Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization. J Am Chem Soc 123:1080–1089

    CAS  Google Scholar 

  35. Vekilov PG, Feeling-Taylor AR, Yau S-T, Petsev D (2002) Solvent entropy contribution to the free energy of protein crystallization. Acta Crystallogr D 58:1611–1616

    Google Scholar 

  36. Müller C, Ulrich J (2011) A more clear insight of the lysozyme crystal composition. Cryst Res Technol 46:646–650

    Google Scholar 

  37. Asherie N (2004) Protein crystallization and phase diagrams. Methods 34:266–272

    CAS  Google Scholar 

  38. Vivarès D, Kaler EW, Lenhoff AM (2005) Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallization via liquid-liquid phase separation. Acta Crystallogr D 61:819–825

    Google Scholar 

  39. Chayen NE (2005) Methods for separating nucleation and growth in protein crystallisation. Prog Biophys Mol Biol 88:329–337

    CAS  Google Scholar 

  40. Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM (2008) Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys J 94:570–583

    CAS  Google Scholar 

  41. Dale GE, Oefner C, D’Arcy A (2003) The protein as a variable in protein crystallization. J Struct Biol 142:88–97

    CAS  Google Scholar 

  42. Saenger W (1987) Structure and dynamics of water surrounding biomolecules. Annu Rev Biophys Biophys Chem 16:93–114

    CAS  Google Scholar 

  43. Pratt LR, Pohorille A (2002) Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chem Rev 102:2671–2692

    CAS  Google Scholar 

  44. Simonson T (2003) Electrostatics and dynamics of proteins. Rep Prog Phys 66:737–787

    CAS  Google Scholar 

  45. Langmuir I (1938) The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J Chem Phys 6:873–896

    CAS  Google Scholar 

  46. Green AA, Hughes WL (1955) Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymol 1:67–90

    CAS  Google Scholar 

  47. Muschol M, Rosenberger F (1995) Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results. J Chem Phys 103:10424–10432

    CAS  Google Scholar 

  48. Retailleau P, Riès-Kautt M, Ducruix A (1997) No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH. Biophys J 73:2156–2163

    CAS  Google Scholar 

  49. Lee H-M, Kim YW, Baird JK (2001) Electrophoretic mobility and zeta-potential of lysozyme crystals in aqueous solutions of some 1:1 electrolytes. J Cryst Growth 232:294–300

    CAS  Google Scholar 

  50. Butler J, Angelini T, Tang J, Wong G (2003) Ion multivalence and like-charge polyelectrolyte attraction. Phys Rev Lett 91:028301

    Google Scholar 

  51. Cohn J (1925) The physical chemistry of the proteins. Physiol Rev 5:349–437

    CAS  Google Scholar 

  52. Melander W, Horvath C (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    CAS  Google Scholar 

  53. Eisenhaber F, Argos P (1994) Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation. Protein Eng 9:1121–1133

    Google Scholar 

  54. Retailleau P, Ducruix A, Rièss-Kautt M (2002) Importance of the nature of anions in lysozyme crystallisation correlated with protein net charge variation. Acta Crystallogr D 1576–1581

  55. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    CAS  Google Scholar 

  56. Collins KD (2006) Ion hydration: implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 119:271–281

    CAS  Google Scholar 

  57. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    CAS  Google Scholar 

  58. Boström M, Tavares FW, Finet S et al (2005) Why forces between proteins follow different Hofmeister series for pH above and below pI. Biophys Chem 117:217–224

    Google Scholar 

  59. Lund M, Jungwirth P (2008) Patchy proteins, anions and the Hofmeister series. J Phys Condens Matter 20:494218

    Google Scholar 

  60. Zhang Y, Cremer PS (2009) The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci USA 106:15249–15253

    CAS  Google Scholar 

  61. Schwierz N, Horinek D, Netz RR (2010) Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity. Langmuir 26:7370–7379

    CAS  Google Scholar 

  62. Mason BD, Zhang-van Enk J, Zhang L et al (2010) Liquid-liquid phase separation of a monoclonal antibody and nonmonotonic influence of Hofmeister anions. Biophys J 99:3792–3800

    CAS  Google Scholar 

  63. Parsons DF, Boström M, Lo Nostro P, Ninham BW (2011) Hofmeister effects: interplay of hydration, non-electrostatic potentials, and ion size. Phys Chem Chem Phys 13:12352–12367

    CAS  Google Scholar 

  64. Wilson EK (2012) Hofmeister still mystifies. Chem Eng News 90:42–43

    Google Scholar 

  65. Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112:2286–2322

    CAS  Google Scholar 

  66. Timasheff SN, Kronman MJ (1959) The extrapolation of light-scattering data to zero concentration. Arch Biochem Biophys 83:60–75

    CAS  Google Scholar 

  67. Neal BL, Asthagiri D, Lenhoff AM (1998) Molecular origins of osmotic second virial coefficients of proteins. Biophys J 75:2469–2477

    CAS  Google Scholar 

  68. Prausnitz JM (2003) Molecular thermodynamics for some applications in biotechnology. Pure Appl Chem 75:859–873

    CAS  Google Scholar 

  69. Neal BL, Asthagiri D, Velev O et al (1999) Why is the osmotic second virial coefficient related to protein crystallization? J Cryst Growth 196:377–387

    CAS  Google Scholar 

  70. Petsev DN, Wu X, Galkin O, Vekilov PG (2003) Thermodynamic functions of concentrated protein solutions from phase equilibria. J Phys Chem B 107:3921–3926

    CAS  Google Scholar 

  71. Jia Y, Liu X-Y (2005) Prediction of protein crystallization based on interfacial and diffusion kinetics. Appl Phys Lett 87:103902

    Google Scholar 

  72. Dumetz AC, Snellinger-O´Brien AM, Kaler EW, Lenhoff AM (2007) Patterns of protein-protein interactions in salt solutions and implications for protein crystallization. Protein Sci 16:1867–1877

    CAS  Google Scholar 

  73. Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM (2008) Effects of pH on protein-protein interactions and implications for protein phase behavior. Biochim Biophys Acta 1784:600–610

    CAS  Google Scholar 

  74. Mehta CM, White ET, Litster JD (2011) Correlation of second virial coefficient with solubility for proteins in salt solutions. Biotechnol Prog 28:163–170

    Google Scholar 

  75. Wilson WW, DeLucas LJ (2014) Applications of the second virial coefficient: protein crystallization and solubility. Acta Crystallogr F 70:543–554

    CAS  Google Scholar 

  76. Polson A, Potgieter GM, Largier JF, Mears GEF, Joubert FJ (1964) The fractionation of protein mixtures by linear polymers of high molecular weight. Biochim Biophys Acta 82:463–475

    CAS  Google Scholar 

  77. Edmond E, Ogston AG (1968) An approach to the study of phase separation in ternary aqueous systems. Biochem J 109:569–576

    CAS  Google Scholar 

  78. Flory PJ (1953) Principles of polymer chemistry. Chapter 12, Cornell University Press, Ithaca, New York

  79. Atha DH, Ingham KC (1981) Mechanism of precipitation of proteins by polyethylene glycols. J Biol Chem 256:12108–12117

    CAS  Google Scholar 

  80. Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21:6536–6544

    CAS  Google Scholar 

  81. Arakawa T, Timasheff SN (1982) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21:6545–6552

    CAS  Google Scholar 

  82. Arakawa T, Timasheff SN (1984) Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23:5912–5923

    CAS  Google Scholar 

  83. Arakawa T, Timasheff SN (1985) Mechanism of poly(ethylene glycol) interaction with proteins. Biochem J 24:6756–6762

    CAS  Google Scholar 

  84. Bhat R, Timasheff SN (1992) Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci 1:1133–1143

    CAS  Google Scholar 

  85. Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97

    CAS  Google Scholar 

  86. Mahadevan H, Hall CK (1990) Statistical-mechanical model of protein precipitation by nonionic polymer. AIChE J 36:1517–1528

    CAS  Google Scholar 

  87. Vivarès D, Belloni L, Tardieu A, Bonneté F (2002) Catching the PEG-induced attractive interaction between proteins. Eur Phys J E 9:15–25

    Google Scholar 

  88. Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256

    CAS  Google Scholar 

  89. Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33:183–192

    CAS  Google Scholar 

  90. Wang Y, Annunziata O (2007) Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J Phys Chem B 111:1222–1230

    CAS  Google Scholar 

  91. Jion AI, Goh L-T, Oh SKW (2006) Crystallization of IgG1 by mapping its liquid-liquid phase separation curves. Biotechnol Bioeng 95:911–918

    CAS  Google Scholar 

  92. Hall D, Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 1649:127–139

    CAS  Google Scholar 

  93. Chen W-Y, Hsu M-Y, Tsai C-W et al (2013) Kosmotrope-like hydration behavior of polyethylene glycol from microcalorimetry and binding isotherm measurements. Langmuir 29:4259–4265

    CAS  Google Scholar 

  94. Pittz EP, Timasheff SN (1978) Interaction of ribonuclease A with aqueous 2-methyl-2,4-pentanediol at pH 5.8. Biochemistry 17:615–623

    CAS  Google Scholar 

  95. McPherson A (1990) Current approaches to macromolecular crystallization. Eur J Biochem 189:1–23

    CAS  Google Scholar 

  96. Sousa R, Lafer EM, Wang BC (1991) Preparation of crystals of T7 RNA polymerase suitable for high-resolution X-ray structure analysis. J Cryst Growth 110:237–246

    CAS  Google Scholar 

  97. Galkin O, Vekilov PG (2000) Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc Natl Acad Sci USA 97:6277–6281

    CAS  Google Scholar 

  98. Galkin O, Vekilov PG (2001) Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways. J Cryst Growth 232:63–76

    CAS  Google Scholar 

  99. García-Ruiz JM (2003) Nucleation of protein crystals. J Struct Biol 142:22–31

    Google Scholar 

  100. Chernov AA (2003) Protein crystals and their growth. J Struct Biol 142:3–21

    CAS  Google Scholar 

  101. Haas C, Drenth J (1999) Understanding protein crystallization on the basis of the phase diagram. J Cryst Growth 196:388–394

    CAS  Google Scholar 

  102. Erdemir D, Lee AY, Myerson AS (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42:621–629

    CAS  Google Scholar 

  103. Streets AM, Quake SR (2010) Ostwald ripening of clusters during protein crystallization. Phys Rev Lett 104:178102

    Google Scholar 

  104. Saridakis E, Chayen NE (2003) Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. Biophys J 84:1218–1222

    CAS  Google Scholar 

  105. Bernardo A, Calmanovici CE, Miranda EA (2004) Induction time as an instrument to enhance comprehension of protein crystallization. Cryst Growth Des 4:799–805

    CAS  Google Scholar 

  106. Rosenberger F, Vekilov PG, Muschol M, Thomas BR (1996) Nucleation and crystallization of globular proteins—what we know and what is missing. J Cryst Growth 168:1–27

    CAS  Google Scholar 

  107. Vekilov PG (2010) Nucleation. Cryst Growth Des 10:5007–5019

    CAS  Google Scholar 

  108. McPherson A (1985) Crystallization of proteins by variation of pH or temperature. Methods Enzym 114:125–127

    CAS  Google Scholar 

  109. Howard SB, Twigg PJ, Baird JK, Meehan EJ (1988) The solubility of hen-egg-white lysozyme. J Cryst Growth 90:94–104

    CAS  Google Scholar 

  110. Rosenberger F, Howard SB, Sowers JW, Nyce TA (1993) Temperature dependence of protein solubility—determination and application to crystallization in X-ray capillaries. J Cryst Growth 129:1–12

    CAS  Google Scholar 

  111. Schall CA, Arnold E, Wiencek JM (1996) Enthalpy of crystallization of hen egg-white lysozyme. J Cryst Growth 165:293–298

    CAS  Google Scholar 

  112. Sleutel M, Willaert R, Gillespie C et al (2009) Kinetics and thermodynamics of glucose isomerase crystallization. Cryst Growth Des 9:497–504

    CAS  Google Scholar 

  113. Vekilov PG, Feeling-Taylor AR, Petsev DN et al (2002) Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C. Biophys J 83:1147–1156

    CAS  Google Scholar 

  114. Lin Y-B, Zhu D-W, Wang T et al (2008) An extensive study of protein phase diagram modification: increasing macromolecular crystallizability by temperature screening. Cryst Growth Des 8:4277–4283

    CAS  Google Scholar 

  115. Astier J-P, Veesler S (2008) Using temperature to crystallize proteins: a mini-review. Cryst Growth Des 8:4215–4219

    CAS  Google Scholar 

  116. Bogdanović X, Hinrichs W (2011) Influence of temperature during crystallization setup on precipitate formation and crystal shape of a metalloendopeptidase. Acta Crystallogr F 67:421–423

    Google Scholar 

  117. Ryu BH, Jones MJ, Ulrich J (2010) Crystallization of hen egg white lysozyme by solvent freeze-out: effect of cooling rate on protein inclusion in the ice layer. Chem Eng Technol 33:1695–1698

    CAS  Google Scholar 

  118. Ryu BH, Ulrich J (2012) Controlled nucleation and growth of protein crystals by solvent freeze-out. Cryst Growth Des 12:6126–6133

    CAS  Google Scholar 

  119. Díaz Borbón V, Ulrich J (2013) SFO-solvent freeze out-technology for industrial proteins. J Cryst Growth 373:38–44

    Google Scholar 

  120. Díaz Borbón V, Ulrich J (2012) Solvent freeze out crystallization of lysozyme from a lysozyme-ovalbumin mixture. Cryst Res Technol 47:541–547

    Google Scholar 

  121. Yu X, Wang J, Ulrich J (2014) Purification of lysozyme from protein mixtures by solvent-freeze-out technology. Chem Eng Technol 37:1353–1357

    CAS  Google Scholar 

  122. Aldabaibeh N, Jones MJ, Myerson AS, Ulrich J (2009) The solubility of orthorhombic lysozyme crystals obtained at high pH. Cryst Growth Des 9:3313–3317

    CAS  Google Scholar 

  123. Maosoongnern S, Díaz Borbón V, Flood AE, Ulrich J (2012) Introducing a fast method to determine the solubility and metastable zone width for proteins: case study lysozyme. Ind Eng Chem Res 51:15251–15257

    CAS  Google Scholar 

  124. Liu Y, Pietzsch M, Ulrich J (2013) Purification of L-asparaginase II by crystallization. Front Chem Sci Eng 7:37–42

    Google Scholar 

  125. Liu Y, Pietzsch M, Ulrich J (2014) Determination of the phase diagram for the crystallization of L-asparaginase II by a turbidity technique. Cryst Res Technol 268:262–268

    Google Scholar 

  126. Liu Y, Ulrich J (2014) Determination of the phase diagram for the crystallization of L-asparaginase II by a turbidity technique—part II. MPD and crystallography studies. Cryst Res Technol 399:393–399

    Google Scholar 

  127. Huettmann H, Zich S, Berkemeyer M, Buchinger W (2015) Design of industrial crystallization of interferon gamma: phase diagrams and solubility curves. Chem Eng Sci 126:341–348

    CAS  Google Scholar 

  128. Berg A, Schuetz M, Dismer F, Hubbuch J (2014) Automated measurement of apparent protein solubility to rapidly assess complex parameter interactions. Food Bioprod Process 92:133–142

    CAS  Google Scholar 

  129. Baumgartner K, Galm L, Nötzold J et al (2015) Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH. Int J Pharm 479:28–40

    CAS  Google Scholar 

  130. Przybycien TM, Pujar NS, Steele LM (2004) Alternative bioseparation operations: life beyond packed-bed chromatography. Curr Opin Biotechnol 15:469–478

    CAS  Google Scholar 

  131. Thömmes J, Etzel M (2007) Alternatives to chromatographic separations. Biotechnol Prog 23:42–45

    Google Scholar 

  132. Klyushnichenko V (2003) Protein crystallization: from HTS to kilogram-scale. Curr Opin Drug Discov Devel 6:848–854

    CAS  Google Scholar 

  133. Harrison RG, Todd P, Rudge SR, Petrides DP (eds) (2003) Bioseparations science and engineering. Oxford University Press, New York

  134. Lee E, Kim W-S (2003) Protein crystallization for large-scale bioseparation. In: Hatti-Kaul R, Mattiasson B (eds) Isolation and purification of proteins, CRC Press Taylor and Francis Group, Boca Raton, pp 277–320

  135. Etzel MR (2007) Bulk protein crystallization—principles and methods. In: Shukla AA, Etzel MR, Gadam S (eds) Process scale bioseparations for the biopharmaceutical industry, CRC Press Taylor and Francis Group, Boca Raton, pp 159–178

  136. Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848:48–63

    CAS  Google Scholar 

  137. Schmidt S, Havekost D, Kaiser K et al (2005) Crystallization for the downstream processing of proteins. Eng Life Sci 5:273–276

    CAS  Google Scholar 

  138. Jones MJ, Ulrich J (2005) Industrielle Kristallisation von Proteinen—Eine Frage der Aktivität. Chem Ing Tech 77:1527–1534

    CAS  Google Scholar 

  139. Matthews T, Bean B (2006) Development of a scalable protein purification process using crystallization. In: Presented at bioprocess international conference and exhibition, San Francisco, 6–8 Nov 2006

  140. Takakura T, Ito T, Yagi S et al (2006) High-level expression and bulk crystallization of recombinant l-methionine γ-lyase, an anticancer agent. Appl Microbiol Biotechnol 70:183–192

    CAS  Google Scholar 

  141. Judge RA, Johns MR, White ET (1995) Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol Bioeng 48:316–323

    CAS  Google Scholar 

  142. Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57:666–675

    CAS  Google Scholar 

  143. Lee TS, Vaghjiani JD, Lye GJ, Turner MK (2000) A systematic approach to the large-scale production of protein crystals. Enzyme Microb Technol 26:582–592

    CAS  Google Scholar 

  144. Peters J, Minuth T, Schröder W (2005) Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr Purif 39:43–53

    CAS  Google Scholar 

  145. Carbone MN, Etzel MR (2006) Seeded isothermal batch crystallization of lysozyme. Biotechnol Bioeng 93:1221–1224

    CAS  Google Scholar 

  146. Hekmat D, Hebel D, Schmid H, Weuster-Botz D (2007) Crystallization of lysozyme: from vapor diffusion experiments to batch crystallization in agitated ml-scale vessels. Process Biochem 42:1649–1654

    CAS  Google Scholar 

  147. Weber M, Jones MJ, Ulrich J (2008) Crystallization as a purification method for jack bean urease: on the suitability of poly(ethylene glycol), Li2SO4, and NaCl as precipitants. Cryst Growth Des 8:711–716

    CAS  Google Scholar 

  148. Weber M, Jones MJ, Ulrich J (2008) Optimisation of isolation and purification of the jack bean enzyme urease by extraction and subsequent crystallization. Food Bioprod Process 86:43–52

    CAS  Google Scholar 

  149. Huettmann H, Berkemeyer M, Buchinger W, Jungbauer A (2014) Preparative crystallization of a single chain antibody using an aqueous two-phase system. Biotechnol Bioeng 111:2192–2199

    CAS  Google Scholar 

  150. Reik LM, Maines SL, Ryan DE et al (1987) A simple, non-chromatographie purification procedure for monoclonal antibodies. J Immunol Methods 100:123–130

    CAS  Google Scholar 

  151. Sommer R, Satzer P, Tscheliessnig A et al (2014) Combined polyethylene glycol and CaCl2 precipitation for the capture and purification of recombinant antibodies. Process Biochem 49:2001–2009

    CAS  Google Scholar 

  152. Tscheliessnig A, Satzer P, Hammerschmidt N et al (2014) Ethanol precipitation for purification of recombinant antibodies. J Biotechnol 188:17–28

    CAS  Google Scholar 

  153. Capito F, Bauer J, Rapp A et al (2013) Feasibility study of semi-selective protein precipitation with salt-tolerant copolymers for industrial purification of therapeutic antibodies. Biotechnol Bioeng 110:2915–2927

    CAS  Google Scholar 

  154. Lewus RA, Darcy PA, Lenhoff AM, Sandler SI (2011) Interactions and phase behavior of a monoclonal antibody. Biotechnol Prog 27:280–289

    CAS  Google Scholar 

  155. Trilisky E, Gillespie R, Osslund TD, Vunnum S (2011) Crystallization and liquid-liquid phase separation of monoclonal antibodies and fc-fusion proteins: screening results. Biotechnol Prog 27:1054–1067

    CAS  Google Scholar 

  156. Zang Y, Kammerer B, Eisenkolb M et al (2011) Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One 6:e25282

    CAS  Google Scholar 

  157. Margolin AL (1996) Novel crystalline catalysts. Trends Biotechnol 14:223–230

    CAS  Google Scholar 

  158. Margolin AL, Navia MA (2001) Protein crystals as novel catalytic materials. Angew Chem Int Ed 40:2204–2222

    CAS  Google Scholar 

  159. Hallas-Møller K, Petersen K, Schlichtkrull J (1952) Crystalline and amorphous insulin-zinc compounds with prolonged action. Science 116:394–398

    Google Scholar 

  160. Schlichtkrull J (1956) Insulin crystals I. Acta Chem Scand 10:1455–1458

    CAS  Google Scholar 

  161. Schlichtkrull J (1957) Insulin crystals IV. Acta Chem Scand 11:299–302

    CAS  Google Scholar 

  162. Merkle HP, Jen A (2002) A crystal clear solution for insulin delivery. Nat Biotechnol 20:789–790

    CAS  Google Scholar 

  163. Brader ML, Sukumar M, Pekar AH et al (2002) Hybrid insulin cocrystals for controlled release delivery. Nat Biotechnol 20:800–804

    CAS  Google Scholar 

  164. Nanev CN, Tonchev VD, Hodzhaoglu FV (2013) Protocol for growing insulin crystals of uniform size. J Cryst Growth 375:10–15

    CAS  Google Scholar 

  165. Drenth J, Haas C (1992) Protein crystals and their stability. J Cryst Growth 122:107–109

    CAS  Google Scholar 

  166. Shenoy B, Wang Y, Shan W, Margolin AL (2001) Stability of crystalline proteins. Biotechnol Bioeng 73:358–369

    CAS  Google Scholar 

  167. Elkordy AA, Forbes RT, Barry BW (2004) Stability of crystallised and spray-dried lysozyme. Int J Pharm 278:209–219

    CAS  Google Scholar 

  168. Pechenov S, Shenoy B, Yang MX et al (2004) Injectable controlled release formulations incorporating protein crystals. J Control Release 96:149–158

    CAS  Google Scholar 

  169. Yang MX, Shenoy B, Disttler M et al (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci USA 100:6934–6939

    CAS  Google Scholar 

  170. Basu SK, Govardhan CP, Jung CW, Margolin AL (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4:301–317

    CAS  Google Scholar 

  171. Matheus S, Friess W, Schwartz D, Mahler H-C (2009) Liquid high concentration IgG1 antibody formulations by precipitation. J Pharm Sci 98:3043–3057

    CAS  Google Scholar 

  172. Hebel D, Ürdingen M, Hekmat D, Weuster-Botz D (2013) Development and scale up of high-yield crystallization processes of lysozyme and lipase using additives. Cryst Growth Des 13:2499–2506

    CAS  Google Scholar 

  173. Hekmat D, Hebel D, Joswig S et al (2007) Advanced protein crystallization using water-soluble ionic liquids as crystallization additives. Biotechnol Lett 29:1703–1711

    CAS  Google Scholar 

  174. Hekmat D, Hebel D, Weuster-Botz D (2008) Crystalline proteins as an alternative to standard formulations. Chem Eng Technol 31:911–916

    CAS  Google Scholar 

  175. Müller C, Ulrich J (2012) The dissolution phenomenon of lysozyme crystals. Cryst Res Technol 47:169–174

    Google Scholar 

  176. Hebel D, Huber S, Stanislawski B, Hekmat D (2013) Stirred batch crystallization of a therapeutic antibody fragment. J Biotechnol 166:206–211

    CAS  Google Scholar 

  177. Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311

    CAS  Google Scholar 

  178. Smejkal B, Helk B, Rondeau J-M et al (2013) Protein crystallization in stirred systems—scale-up via the maximum local energy dissipation. Biotechnol Bioeng 110:1956–1963

    CAS  Google Scholar 

  179. Smejkal B (2013) Aufreinigung und Formulierung eines therapeutischen Antikörpers mittels Kristallisation. Doctorate thesis. Institute of Biochemical Engineering, Technische Universität München

  180. Yaoi M, Adachi H, Takano K et al (2004) Effect of stirring method on protein crystallization. Jpn J Appl Phys 43:L1318–L1319

    Google Scholar 

  181. Lorber B, Skouri M, Munch J-P, Giegé R (1993) The influence of impurities on protein crystallization; the case of lysozyme. J Cryst Growth 128:1203–1211

    CAS  Google Scholar 

  182. Judge RA, Forsythe EL, Pusey ML (1998) The effect of protein impurities on lysozyme crystal growth. Biotechnol Bioeng 59:776–785

    CAS  Google Scholar 

  183. Ferreira C, Rocha FA, Damas AM, Martins PM (2013) On growth rate hysteresis and catastrophic crystal growth. J Cryst Growth 368:47–55

    CAS  Google Scholar 

  184. Hekmat D, Maslak D, Freiherr von Roman M et al (2015) Non-chromatographic preparative purification of enhanced green fluorescent protein. J Biotechnol 194:84–90

    CAS  Google Scholar 

  185. Smejkal B, Agrawal NJ, Helk B et al (2013) Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol Bioeng 110:2452–2461

    CAS  Google Scholar 

  186. Lauer TM, Agrawal NJ, Chennamsetty N et al (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101:102–115

    CAS  Google Scholar 

  187. Agrawal NJ, Helk B, Trout BL (2014) A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein. FEBS Lett 588:326–333

    CAS  Google Scholar 

  188. Andya JD, Hsu CC, Shire SJ (2003) Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci 5:1–11

    Google Scholar 

  189. Chennamsetty N, Voynov V, Kayser V et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 106:11937–11942

    CAS  Google Scholar 

  190. Rushton JH, Costich EW, Everett HJ (1950) Power characteristics of mixing impellers. Part 2. Chem Eng Progr 46:467–476

    CAS  Google Scholar 

  191. Hebel D (2013) Protein crystallization in stirred-tank reactors. Doctorate thesis. Institute of Biochemical Engineering, Technische Universität München

  192. Mirro R, Voll K (2009) Which impeller is right for your cell line? Bioprocess Int 7:52–57

    Google Scholar 

  193. Bermingham SK, Kramer HJM, van Rosmalen GM (1998) Towards on-scale crystalliser design using compartmental models. Comput Chem Eng 22:S355–S362

    CAS  Google Scholar 

  194. Kramer HJ, Bermingham SK, van Rosmalen GM (1999) Design of industrial crystallisers for a given product quality. J Cryst Growth 198–199:729–737

    Google Scholar 

  195. Henzler H-J (2000) Particle stress in bioreactors. Adv Biochem Eng Biotechnol 67:35–82

    CAS  Google Scholar 

  196. Bell DJ, Dunnill P (1982) Shear disruption of soya protein precipitate particles and the effect of aging in a stirred tank. Biotechnol Bioeng 24:1271–1285

    CAS  Google Scholar 

  197. Raphael M, Rohani S (1999) Sunflower protein precipitation in a tubular precipitator. Can J Chem Eng 77:540–554

    CAS  Google Scholar 

  198. Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31:479–492

    CAS  Google Scholar 

  199. Hammerschmidt N, Tscheliessnig A, Sommer R et al (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9:766–775

    CAS  Google Scholar 

  200. Pan S, Zelger M, Hahn R, Jungbauer A (2014) Continuous protein refolding in a tubular reactor. Chem Eng Sci 116:763–772

    CAS  Google Scholar 

  201. Pan S, Zelger M, Jungbauer A, Hahn R (2014) Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor. J Biotechnol 185:39–50

    CAS  Google Scholar 

  202. Hildebrandt C (2014) Crystalline monoclonal antibodies: development of stable crystals for drying and sustained release formulations. Doctorate thesis. Institute of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München

  203. Shi D, Mhaskar P, El-Farra NH, Christofides PD (2005) Predictive control of crystal size distribution in protein crystallization. Nanotechnology 16:S562–S574

    Google Scholar 

  204. Vivares D, Veesler S, Astier J-P, Bonneté F (2006) Polymorphism of urate oxidase in PEG solutions. Cryst Growth Des 6:287–292

    CAS  Google Scholar 

  205. Lovette MA, Browning AR, Griffin DW et al (2008) Crystal shape engineering. Ind Eng Chem Res 47:9812–9833

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Dirk Weuster-Botz, Head of the Institute of Biochemical Engineering, Technische Universität München, Germany, for the excellent support of this work and for the opportunity of using the outstanding infrastructure at the Institute of Biochemical Engineering. The author also thanks Dirk Hebel and Benjamin Smejkal for performing the work presented in some of the case studies. The funding of the Federal Ministry of Education and Research, Germany (Grant No. 0315335B), and Novartis Pharma AG, Switzerland, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusch Hekmat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmat, D. Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 38, 1209–1231 (2015). https://doi.org/10.1007/s00449-015-1374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1374-y

Keywords

Navigation