Skip to main content
Log in

Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Aerobic granular sludge degrading recalcitrant compounds are generally hard to be cultivated. This study investigated the feasibility of cultivating 2,4-dichlorophenoxyacetic acid (2,4-d) degrading aerobic granules using half-matured sludge granules pre-grown on glucose as the seeds and bioaugmentation with a 2,4-d degrading strain Achromobacter sp. QXH. Results showed that bioaugmentation promoted the steady transformation of glucose-grown granules to 2,4-d degrading sludge granules and fast establishment of 2,4-d degradation ability. The 2,4-d degradation rate of the bioaugmented granules was enhanced by 36–62 % compared to the control at 2,4-d concentrations of 144–565 mg/L on Day 18. The inoculated strain was incorporated into the half-matured granules successfully and survived till the end of operation (220 days). Sludge granules at a mean size of 420 µm and capable of utilizing 500 mg/L 2,4-d as the sole carbon source were finally obtained. Sludge microbial community shifted slightly during the whole operation and the dominant bacteria species belonged to Proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dorigo U, Bourrain X, Berard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318:101–114

    Article  CAS  Google Scholar 

  2. Macur RE, Wheeler JT, Burr MD, Inskeep WP (2007) Impacts of 2,4-d application on soil microbial community structure and on populations associated with 2,4-D degradation. Microbiol Res 162:37–45

    Article  CAS  Google Scholar 

  3. Mangat SS, Elefsiniotis P (1999) Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors. Water Res 33:861–867

    Article  CAS  Google Scholar 

  4. Quan XC, Tang H, Xiong WC, Yang ZF (2010) Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 179:1136–1142

    Article  CAS  Google Scholar 

  5. Quan XC, Tang H, Ma JY (2011) Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions. J Hazard Mater 185:689–695

    Article  CAS  Google Scholar 

  6. Tay STL, Moy BYP, Jiang HL, Tay JH (2005) Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed. J Biotechnol 115:387–395

    Article  CAS  Google Scholar 

  7. Wang SG, Liu XW, Zhang HY, Gong WX, Sun XW, Gao BY (2007) Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor. Chemosphere 69:769–775

    Article  CAS  Google Scholar 

  8. Tay STL, Zhuang WQ, Tay JH (2005) Start-up, microbial community analysis and formation of aerobic granules in a tert-butyl alcohol degrading sequencing batch reactor. Environ Sci Technol 39:5774–5780

    Article  CAS  Google Scholar 

  9. Yi S, Zhuang WQ, Wu B, Tay STL, Tay JH (2006) Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol 40:2396–2401

    Article  CAS  Google Scholar 

  10. Zhu L, Xu XY, Luo WG, Tian ZJ, Lin HZ, Zhang NN (2008) A comparative study on the formation and characterization of aerobic 4-chloroaniline-degrading granules in SBR and SABR. Appl Microbiol Biot 79:867–874

    Article  CAS  Google Scholar 

  11. Quan XC, Shi HC, Liu H, Lv PP, Qian Y (2004) Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture. Water Res 38:245–253

    Article  CAS  Google Scholar 

  12. Yu FB, Ali SW, Guan LB, Li SP, Zhou S (2010) Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities. J Hazard Mater 176:20–26

    Article  CAS  Google Scholar 

  13. Quan XC, Shi HC, Wang JL, Qian Y (2003) Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture. Chemosphere 50:1069–1074

    Article  CAS  Google Scholar 

  14. van Limbergen H, Top EM, Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biot 50:16–23

    Article  Google Scholar 

  15. Jiang HL, Tay JH, Maszenan AM, Tay STL (2006) Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 40:6137–6142

    Article  CAS  Google Scholar 

  16. Ivanov V, Wang XH, Tay STL, Tay JH (2006) Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Appl Microbiol Biot 7:374–381

    Article  Google Scholar 

  17. Liu YQ, Moy B, Kong YH, Tay JH (2010) Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb Technol 46:520–525

    Article  CAS  Google Scholar 

  18. Ermakova IT, Shushkova TV, Leontevskii AA (2008) Microbial degradation of organophosphonates by soil bacteria. Microbiology 77:615–620

    Article  CAS  Google Scholar 

  19. Tanaka T, Hachiyanagi H, Yamamoto N, Iijima T, Kido Y, Uyeda M, Takahama K (2009) Biodegradation of endocrine-disrupting chemical aniline by microorganisms. J Health Sci 55:625–630

    Article  CAS  Google Scholar 

  20. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  Google Scholar 

  21. Xiong WC, Quan XC, Ma JY, Wang R (2010) Study on gfp labeling of a 2,4-D degrading strain and its detection in a wastewater biotreatment system. Environ Sci 31:1864–1870

    CAS  Google Scholar 

  22. Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by Most-Probable-Number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microb 62:1405–1415

    CAS  Google Scholar 

  23. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59:695–700

    CAS  Google Scholar 

  24. APHA (1998) Standard methods for the examination of water and wastewater, twentieth edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

    Google Scholar 

  25. Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 149:77–83

    Article  CAS  Google Scholar 

  26. Geisenberger O, Ammendola A, Christensen BB, Molin S, Schleifer KH, Eberl L (1999) Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiol Lett 174:9–17

    Article  CAS  Google Scholar 

  27. Jiang HL, Maszenan AM, Tay JH (2007) Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules. Appl. Microbiol Biot 75:1191–1200

    Article  CAS  Google Scholar 

  28. Wilderer PA, Rubio MA, Davids L (1991) Impact of the addition of pure cultures on the performance of mixed culture reactors. Water Res 25:1307–1313

    Article  CAS  Google Scholar 

  29. Fulthorpe RR, Mcgowan C, Maltseva OV, Holben WE, Tiedje JM (1995) 2,4-dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microb 61:3274–3281

    CAS  Google Scholar 

  30. Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microb 63:2266–2272

    CAS  Google Scholar 

  31. McGowan C, Fulthorpe R, Wright A, Tiedje JM (1998) Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl Environ Microb 64:4089–4092

    CAS  Google Scholar 

  32. Cavalca L, Hartmann A, Rouard N, Soulas G (1999) Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS Microbiol Ecol 29:45–58

    Article  CAS  Google Scholar 

  33. Vallaeys T, Courde L, Mc Gowan C, Wright AD, Fulthorpe RR (1999) Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol Ecol 28:373–382

    Article  CAS  Google Scholar 

  34. Zhang J, Zheng JW, Hang BJ, Ni YY, He JA, Li SP (2011) Rhodanobacter xiangquanii sp. nov., a novel anilofos-degrading bacterium isolated from a wastewater treating system. Curr Microbiol 62:645–649

    Article  CAS  Google Scholar 

  35. Zitomer DH, Duran M, Albert R, Guven E (2007) Thermophilic aerobic granular biomass for enhanced settleability. Water Res 41:819–825

    Article  CAS  Google Scholar 

  36. Toyama T, Sato Y, Inoue D, Sei K, Chang YC, Kikuchi S, Ike M (2009) Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. J Biosci Bioeng 108:147–150

    Article  CAS  Google Scholar 

  37. Huang HD, Wang W, Ma T, Li GQ, Liang FL, Liu RL (2009) Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Micr 59:719–723

    Article  CAS  Google Scholar 

  38. Hashimoto T, Onda K, Morita T, Luxmy BS, Tada K, Miya A, Murakami T (2010) Contribution of the estrogen-degrading bacterium Novosphingobium sp. Strain JEM-1 to estrogen removal in wastewater treatment. J Environ Eng ASCE 136:890–896

    Article  CAS  Google Scholar 

  39. Liang QF, Lloyd-Jones G (2010) Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Micr 60:413–416

    Article  CAS  Google Scholar 

  40. Sipila TP, Vaisanen P, Paulin L, Yrjala K (2010) Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho- and meta-pathways with differential expression shown by RT-PCR. Biodegradation 21:771–784

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by “National Natural Science Foundation of China” (No. 51178049). The authors wish to express their gratitude to Prof. Søren Molin in Technical University of Denmark for the donation some strains required for gfp labeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchun Quan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, X., Ma, J., Xiong, W. et al. Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules. Bioprocess Biosyst Eng 38, 1081–1090 (2015). https://doi.org/10.1007/s00449-014-1350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1350-y

Keywords

Navigation