Skip to main content
Log in

Distributed approximation of k-service assignment

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

We consider the k-Service Assignment problem (\(k\)-SA). The input consists of a network that contains servers and clients. Associated with each client is a demand and a profit. In addition, each client c has a service requirement, where \(\kappa (c)\) is a positive integer. A client c is satisfied only if its demand is handled by exactly \(\kappa (c)\) neighboring servers. The objective is to maximize the total profit of satisfied clients, while obeying the given capacity limits of the servers. We focus here on the more challenging case of hard constraints, where no profit is granted for partially satisfied clients. This models, e.g., when a client wants, for reasons of fault tolerance, a file to be stored at \(\kappa (c)\) or more nearby servers. Other motivations from the literature include resource allocation in 4G cellular networks and machine scheduling on related machines with assignment restrictions. In the r-restricted version of \(k\)-SA, no client requires more than an r-fraction of the capacity of any adjacent server. We present a (centralized) polynomial-time -approximation algorithm for r-restricted \(k\)-SA. A variant of this algorithm achieves an approximation ratio of when given a resource augmentation factor of \(1+r\). We use the latter result to present a -approximation algorithm for \(k\)-SA. In the distributed setting, we present: (i) a -approximation algorithm for r-restricted \(k\)-SA, (ii) a -approximation algorithm that uses a resource augmentation factor of \(1+r\) for r-restricted \(k\)-SA, both for any constant \(\varepsilon >0\), and (iii) an -approximation algorithm for \(k\)-SA (in expectation). The three distributed algorithms run in \(O(k^2 \varepsilon ^{-2} \log ^3 n)\) synchronous rounds (with high probability). In particular, this yields the first distributed -approximation of \(1\)-SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amzallag, D., Bar-Yehuda, R., Raz, D., Scalosub, G.: Cell selection in 4G cellular networks. IEEE Trans. Mobile Comput. 12(7), 1443–1455 (2013)

    Article  Google Scholar 

  2. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified framework for approximation algorithms. ACM Comput. Surv. 36(4), 422–463 (2004)

    Article  Google Scholar 

  5. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Ann. Discret. Math. 25, 27–46 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput. 33(4), 837–851 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, R., Grebla, G.: Joint scheduling and fast cell selection in OFDMA wireless networks. IEEE/ACM Trans. Netw. 23(1), 114–125 (2015)

    Article  Google Scholar 

  9. Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the generalized assignment problem. Inf. Process. Lett. 100(4), 162–166 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J., Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdös, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Hung. 17(1–2), 61–99 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: improving the factor of 1-1/e. In: 47th IEEE Annual Symposium on Foundations of Computer Science, pp. 667–676 (2006)

  14. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 611–620 (2006)

  15. Frieze, A.M., Clarke, M.R.B.: Approximation algorithms for the \(m\)-dimensional \(0-1\) knapsack problem: worst-case and probabilistic analyses. Eur. J. Oper. Res. 15, 100–109 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurewitz, O., Sandomirsky, Y., Scalosub, G.: Cellular multi-coverage with non-uniform rates. In: INFOCOM, pp. 1330–1338 (2014)

  17. Halldórsson, M.M., Köhler, S., Patt-Shamir, B., Rawitz, D.: Distributed backup placement in networks. In: 27th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 274–283 (2015)

  18. Hȧstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  19. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating \(k\)-set packing. Comput. Complex. 15(1), 20–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magazine, M.J., Chern, M.S.: A note on approximation schemes for multidimensional knapsack problems. Math. Oper. Res. 9(2), 244–247 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Patt-Shamir, B., Rawitz, D., Scalosub, G.: Distributed approximation of cellular coverage. J. Parallel Distrib. Comput. 72(3), 402–408 (2012)

    Article  MATH  Google Scholar 

  24. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

  25. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rawitz, D., Voloshin, A.: Flexible cell selection in cellular networks. In: 12th International Symposium on Algorithms and Experiments for Wireless Sensor Networks. LNCS, vol. 10050, pp. 112–128 (2016)

  27. Sahni, S.: Approximate algorithms for the 0/1 knapsack problem. J. ACM 22(1), 115–124 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math. Program. 62, 461–474 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM J. Comput. 29(2), 648–670 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wattenhofer, R.: Principles of distributed computing: maximal independent set. http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf. Accessed 27 Aug 2015

Download references

Acknowledgements

We thank Boaz Patt-Shamir for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Köhler.

Additional information

A preliminary version was presented at the 19th International Conference on Principles of Distributed Systems (OPODIS) 2015.

M. M. Halldórsson supported in part by the Icelandic Research Fund (Grant nos. 120032011 and 152679-051).

S. Köhler supported in part by the Sustainability Center Freiburg, a cooperation of the Fraunhofer Society and the University of Freiburg, supported by grants from the Baden-Württemberg Ministry of Economics and the Baden-Württemberg Ministry of Science, Research and the Arts.

D. Rawitz supported in part by a grant from the Israeli Ministry of Science, Technology, and Space (Grant no. 3-10996) and by the Israel Science Foundation (Grant no. 497/14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halldórsson, M.M., Köhler, S. & Rawitz, D. Distributed approximation of k-service assignment. Distrib. Comput. 32, 27–40 (2019). https://doi.org/10.1007/s00446-017-0321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-017-0321-3

Keywords

Navigation