Skip to main content
Log in

Effects of debris entrainment and recycling on explosive volcanic eruption jets and columns

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A multiphase fluid dynamic model is used to explore the effects of entrainment of granular debris into sustained volcanic jets such as those which produce sub-Plinian to Plinian eruption columns. The debris may be sourced from processes such as avalanches from crater walls or from recycling of previously erupted material. The results indicate that debris is not immediately, homogeneously mixed into a jet but instead forms a dense sheath that is dragged upward around the jet margin. While very small volumes of debris relative to the eruptive discharge rate mix progressively into the jet with increasing altitude, the dense sheath can inhibit entrainment of air into the lower portions of the jet, which may explain signs of column instability such as increased stratification in fallout deposits where lithic content increases. As debris volume increases, the dense sheath can collapse from a range of elevations to feed pyroclastic currents. The presence of the sheath of entrained debris contradicts some assumptions such as the top-hat profile for density and velocity that is commonly used in 1-D models. Transitions from fallout-producing buoyant column to collapsing behavior can be related to debris entrainment without any changes in primary eruption parameters such as vent size, exit velocity, or gas content. Boiling-over behavior can also be caused by debris entrainment, including recycling of previously erupted material such as might occur in a crater with restricted outlet. When entrained debris is relatively fine-grained such that it can couple well with the erupting mixture, complex, highly transient overpressured jet processes can occur due to the pinching effect of debris flowing into the base of the jet. Increasingly coarse debris causes collimation of the jet within the sheath of entrained material. The results suggest that accounting for the effects of debris entrainment is likely important for theoretical assessment of many natural eruption sequences and for assessment of hazard scenarios for potential sub-Plinian to Plinian activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews RG, White JDL, Dürig T, Zimanowski B (2014) Discrete blasts in granular material yield two-stage process of cavitation and granular fountaining. Geophys Res Lett 41:422–428. https://doi.org/10.1002/2013GL058526

    Article  Google Scholar 

  • Andrews RG, White JDL, Dürig T, Zimanowski B (2016) Simulating maar-diatreme volcanic systems in bench-scale experiments. Geol Soc London 173:265–281. https://doi.org/10.1144/jgs2015-073

    Article  Google Scholar 

  • Anilkumar AV, Sparks RSJ, Sturtevant B (1993) Geological implications and applications of high-velocity two-phase flow experiments. J Volcanol Geotherm Res 56:145–160. https://doi.org/10.1016/0377-0273(93)90056

    Article  Google Scholar 

  • Bear AN, Cas RAF, Giordano G (2009) The implications of spatter, pumice and lithic clast rich proximal co-ignimbrite lag breccias on the dynamics of caldera forming eruptions: the 151 ka Sutri eruption, Vico Volcano, Central Italy. J Volcanol Geotherm Res 181:1–24. https://doi.org/10.1016/j.jvolgeores.2008.11.032

    Article  Google Scholar 

  • Benyahia S, Syamlal M, O’Brien TJ (2012) Summary of MFIX Equations 2012–1. https://mfix.netl.doe.gov/doc/mfix-archive/mfix_current_documentation/MFIXEquations2012-1.pdf. Accessed 20 April 2023

  • Brand BD, Pollock N, Vallance JW, Esposti Ongaro T, Roche O, Trolese M, Giordano G, Marshall AA, Criswell SW (2023) Advances in our understanding of pyroclastic current behavior from the 1980 eruption sequence of Mount St. Helens volcano (Washington) USA. Bull Volc 85:24. https://doi.org/10.1007/s00445-022-01617

  • Breard ECP, Dufek J, Lube G (2018) Enhanced mobility of concentrated pyroclastic density currents: an examination of a self-fluidization mechanism. Geophys Res Lett 45:654–664. https://doi.org/10.1002/2017GL075759

    Article  Google Scholar 

  • Breard ECP, Dufek J, Roche O (2019) Continuum modeling of pressure-balanced and fluidized granular flows in 2-D: comparison with glass bead experiments and implications for concentrated pyroclastic density currents. J Geophys Res Sol Earth 124:5557–5583. https://doi.org/10.1029/2018JB016874

    Article  Google Scholar 

  • Burcat A, Ruscic B (2005) Third Millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Report ANL-05/20 TAE 960 Argonne National Laboratory Argonne IL USA

  • Carcano S, Esposti Ongaro T, Bonaventura L, Neri A (2014) Influence of grain-size distribution on the dynamics of underexpanded volcanic jets. J Volcanol Geotherm Res 285:60–80. https://doi.org/10.1016/j.volgeores.2014.08.003

    Article  Google Scholar 

  • Cerminara M, Esposti Ongaro T, Berselli LC (2016) ASHEE-1.0: a compressible, equilibrium-Eulerian model for volcanic ash plumes. Geosci Model Dev 9:697–730. https://doi.org/10.5194/gmd-9-697-2016

    Article  Google Scholar 

  • Dartevelle S (2004). Numerical modeling of geophysical granular flows: 1. a comprehensive approach to granular rheologies and geophysical multiphase flows. Geochem Geophys Geosys 5:Q08003. https://doi.org/10.1029/2003GC000636

  • Dartevelle S, Valentine GA (2007) Transient multiphase processes during the explosive eruption of basalt through a geothermal borehole (Námafjall, Iceland, 1977) and implications for natural volcanic flows. Earth Planet Sci Lett 262:363–384. https://doi.org/10.1016/j.epsl.2007.07.053

    Article  Google Scholar 

  • Dartevelle S, Rose WI, Stix J, Kelfoun K, Vallance JW (2004) Numerical modeling of geophysical granular flows: 2 computer simulations of plinian clouds and pyroclastic flows and surges. Geochem Geophys Geosys 5:Q08004. https://doi.org/10.1029/2003GC000637

  • Di Muro A, Neri A, Rosi M (2004) Contemporaneous convective and collapsing eruptive dynamics: the transitional regime of explosive eruptions. Geophys Res Lett 31:2001–2004

    Google Scholar 

  • Di Muro A, Rosi M, Aguilera E, Barbieri R, Massa G, Mondula F, Pieri F (2008) Transport and sedimentation dynamics of transitional explosive eruption columns: the example of the 800 BP Quilotos plinian eruption (Ecuador). J Volcanol Geotherm Res 174:307–324. https://doi.org/10.1016/j.jvolgeores.2008.03.002

    Article  Google Scholar 

  • Doulliet GA, Tsang-Hin-Sun É, Kueppers U, Letort J, Pacheco DA, Goldstein F, Von Aulock F, Lavallée Y, Hanson JB, Bustillos J, Robin C, Ramón P, Hall M, Dingwell DB (2013) Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano. Ecuador Bull Volcanol 75:765. https://doi.org/10.1007/s00445-013-0765-7

    Article  Google Scholar 

  • Dowey N, Williams R (2022) Simultaneous fall and flow during pyroclastic eruptions: a novel proximal hybrid facies. Geology 50:1187–1191. https://doi.org/10.1130/G50169.1

    Article  Google Scholar 

  • Druitt TH (1985) Vent evolution and lag breccia formation during the Cape Riva eruption of Santorini, Greece. J Geol 93:439–454

    Article  Google Scholar 

  • Druitt TH, Bacon CR (1986) Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon. J Volcanol Geotherm Res 29:1–32

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2007a) Dynamics and deposits generated by the kos plateau tuff eruption: controls of basal particle loss on pyroclastic flow transport. Geochem Geophys Geosys 8:Q12007. https://doi.org/10.1029/2007GC001741

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2007b) Suspended load and bed-load transport of particle-laden gravity currents: the role of particle-bed interaction. Theor Comp Fluid Dyn 21:119–145. https://doi.org/10.1007/s00162-007-0041-6

    Article  Google Scholar 

  • Dufek J, Manga M (2008) In situ production of ash in pyroclastic flows. J Geophys Res Sol Earth 113:B09207. https://doi.org/10.1029/2007JB005555

    Article  Google Scholar 

  • Dufek J, Wexler J, Manga M (2009) Transport capacity of pyroclastic density currents: experiments and models of substrate-flow interaction. J Geophys Res Sol Earth 114:B11203. https://doi.org/10.1029/2008JB006216

    Article  Google Scholar 

  • Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684

    Article  Google Scholar 

  • Gilchrist JT, Jellinek AM (2021) Sediment waves and the gravitational stability of volcanic jets. Bull Volcanol 83:64. https://doi.org/10.1007/s00445-021-01422-1

    Article  Google Scholar 

  • Glaze LS, Baloga SM (1996) Sensitivity of buoyant plume heights to ambient atmospheric conditions: implications for volcanic eruption columns. J Geophys Res 101:1529–1540

    Article  Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL, Taddeucci J (2014) Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem Geophys Geosys 15. https://doi.org/10.1002/2013GC005198

  • Hildreth W, Fierstein J (2012) The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century: centennial perspectives. US Geol Surv Prof Pap 1791:259. https://doi.org/10.3133/pp1791

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull Volcanol 66:95–133. https://doi.org/10.1007/s00445-003-0297-7

    Article  Google Scholar 

  • Kieffer SW, Sturtevant B (1984) Laboratory studies of volcanic jets. J Geophys Res 89:8253–8268

    Article  Google Scholar 

  • Koyaguchi T, Suzuki YJ, Takeda K, Inagawa S (2018) The condition of eruption column collapse: 2. three-dimensional numerical simulations of eruption column dynamics. J Geophys Res Sol Earth 123:7483–7508. https://doi.org/10.1029/2017JB015259

    Article  Google Scholar 

  • Marble FE (1970) Dynamics of dusty gases. Ann Rev Fluid Mech 2:397–446

    Article  Google Scholar 

  • Mastin LG (2007) A user-friendly one-dimensional model for wet volcanic plumes. Geochem Geophys Geosys 8:Q03014. https://doi.org/10.1029/2006GC001455

  • Neri A, Dobran F (1994) Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J Geophys Res 99:11833–11857

    Article  Google Scholar 

  • Ogden DE, Glatzmaier GA, Wohletz KH (2008) Effects of vent overpressure on buoyant eruption columns: implications for plume stability. Earth Planet Sci Lett 268:283–292. https://doi.org/10.1016/j.epsl.2008.01.014

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin volcano 1943–1952 (Mexico). J Volcanol Geotherm Res 271:359–368. https://doi.org/10.1016/j.epsl.2008.04.026

    Article  Google Scholar 

  • Rader E, Geist D, Geissman J, Dufek J, Harpp K (2015) Hot clasts and cold blasts: thermal heterogeneity in boiling-over pyroclastic density currents. In: Ort MH, Porreca M, Geisman JW (eds), The use of paleomagnetism and rock magnetism to understand volcanic processes. Geol Soc London Sp Pub 396:67–86. https://doi.org/10.1144/SP396.16

  • Rosi M, Vezzoli L, Castelmenzano A, Grieco G (1999) Plinian pumice fall deposit of the campanian ignimbrite eruption (Phlegraean Fields, Italy). J Volcanol Geotherm Res 91:179–198

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008a) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178:104–112

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008b) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70:1151–1168. https://doi.org/10.1007/s00445-008-02301

    Article  Google Scholar 

  • Scarpati C, Perrotta A (2016) Stratigraphy and physical parameters of the plinian phase of the campanian ignimbrite eruption. Geol Soc Am Bull 128:1147–1159. https://doi.org/10.1130/B31331.1

    Article  Google Scholar 

  • Simmons JM, Cas RAF, Druitt TH, Folkes CB (2016) Complex variations during a caldera-forming Plinian eruption, including precursor deposits, thick pumice fallout, co-ignimbrite breccias and climactic lag breccias: THE 184 ka Lower pumice 1 eruption sequence, Santorini, Greece. J Volcanol Geotherm Res 324:200–219. https://doi.org/10.1016/j.volgeores.2016.05.013

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley 590

  • Suzuki YJ, Koyaguchi T (2012) 3-D numerical simulation of eruption column collapse: effects of vent size on pressure-balanced jet/plumes. J Volcanol Geotherm Res 221–222:1–13. https://doi.org/10.1016/j.jvolgeores.2012.01.013

    Article  Google Scholar 

  • Suzuki YJ, Koyaguchi T, Ogawa M, Hachisu I (2005) A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model. J Geophys Res 110:B08201. https://doi.org/10.1029/2004JB003460

    Article  Google Scholar 

  • Suzuki-Kamata K, Kamata H, Bacon CR (1993) Evolution of the caldera-forming eruption at Crater Lake, Oregon, indicated by component analysis of lithic fragments. J Geophys Res Sol Earth 98:14059–14074. https://doi.org/10.1029/93JB00934

    Article  Google Scholar 

  • Sweeney MR, Valentine GA (2015) Transport and mixing dynamics from explosions in debris-filled volcanic conduits: numerical results and implications for maar-diatreme volcanoes. Earth Planet Sci Lett 425:64–76. https://doi.org/10.1016/j.epsl.2015.05.038

    Article  Google Scholar 

  • Sweeney MR, Valentine GA (2017) Impact zone dynamics of dilute mono-and polydisperse jets and their implications for initial conditions of pyroclastic density currents. Phys Fluids 29:093304. https://doi.org/10.1063/1/5004197

    Article  Google Scholar 

  • Sweeney MR, Grosso ZS, Valentine GA (2018) Topographic controls on a phreatomagmatic maar-diatreme eruption (Holocene Dotsero volcano, Colorado, USA): field and numerical results. Bull Volcanol 80:78. https://doi.org/10.1007/s00445-018-1253-x

    Article  Google Scholar 

  • Syamlal M, Pannala S (2011) Multiphase continuum formulation for gas-solids reacting flows. In: Pannala S, Syamlal M, O’Brien TJ (eds), Computational gas-solids flows and reacting systems: theory methods and practice. Hershey Pennsylvania IGI Global: 1–65

  • Syamlal M, Rogers W, O'Brien TJ (1993) MFIX documentation theory guide. Technical Note DOE/METC-94/1004, NTIS/DE94000087 US Dept Energy Morgantown Energy Technology Center West Virginia 52

  • Syamlal M, Musser J, Dietiker J-F (2017) Two-fluid model in MFIX. In: Michaelides EE, Crowe CT, Schwarzkopf JD (eds) Multiphase flow handbook, 2nd edn. CRC Press, Boca Raton, pp 242–275

    Google Scholar 

  • Taddeucci J, Wohletz KH (2001) Temporal evolution of the Minoan eruption (Santorini, Greece), as recorded by its Plinian fall deposit and interlayered ash flow beds. J Volcanol Geotherm Res 109:209–317

    Article  Google Scholar 

  • Valentine GA (2020) Initiation of dilute and concentrated pyroclastic currents from collapsing mixtures and origin of their proximal deposits. Bull Volcanol 82:20. https://doi.org/10.1007/s00445-020-1366-x

    Article  Google Scholar 

  • Valentine GA, Cole MA (2021) Explosive caldera-forming eruptions and debris-filled vents: gargle dynamics. Geology 49:1240–1244. https://doi.org/10.1130/G48995

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes – processes and problems. J Volcanol Geotherm Res 177:857–873. https://doi.org/10.1016/j.jvolgeores.2008.01.050

    Article  Google Scholar 

  • Valentine GA, Sweeney MR (2018) Compressible flow phenomena at inception of lateral density currents fed by collapsing gas-particle mixtures. J Geophys Res Sol Earth 123:1286–1302. https://doi.org/10.1002/2017JB015129

    Article  Google Scholar 

  • Valentine GA, Wohletz KH (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94:1867–1887

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41:3045–3051. https://doi.org/10.1002/2014GL060096

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Macorps E, Ross P-S, White JDL, Döhring E, Sonder I (2015) Experiments with vertically- and laterally-migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull Volcanol 77:15. https://doi.org/10.1007/s00445-015-0901-7

    Article  Google Scholar 

  • Valentine GA, Palladino DM, DiemKaye K, Fletcher C (2019) Lithic-rich and lithic-poor ignimbrites and their basal deposits: Sovana and Sorano formations (Latera caldera, Italy). Bull Volcanol 81:29. https://doi.org/10.1007/s00445-019-1288-7

    Article  Google Scholar 

  • Walker GPL (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240

    Article  Google Scholar 

  • Wilson CJN, Hildreth W (1997) The Bishop Tuff: new insights from eruptive stratigraphy. J Geol 105:407–439

    Article  Google Scholar 

  • Wilson CJN, Walker GPL (1985) The Taupo eruption, New Zealand I. General aspects. Phil Trans R Soc Lond 314:199–228

    Article  Google Scholar 

  • Wilson L, Sparks RSJ (1980) Explosive volcanic eruptions - IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys J Internat 63:117–148. https://doi.org/10.1111/j.1365-246X.1980.tb02613.x

    Article  Google Scholar 

  • Woods AW (1988) The fluid dynamics and thermodynamics of Plinian eruption columns. Bull Volcanol 50:169–193

    Article  Google Scholar 

  • Yasuda Y, Suzuki-Kamata K (2018) The origin of a coarse lithic breccia in the 34 ka caldera-forming Sounkyo eruption, Taisetsu volcano group, central Hokkaido, Japan. J Volcanol Geotherm Res 357:287–305. https://doi.org/10.1016/j.jvolgeores.2018.04.017

    Article  Google Scholar 

Download references

Acknowledgements

The reviews and comments of Eric Breard, Judy Fierstein, and Tomaso Esposti Ongaro (Associate Editor) are greatly appreciated. Numerical simulations were conducted at the University at Buffalo’s Center for Computational Research, with support from US National Science Foundation grant EAR-2035260.

Funding

This study is supported by the US National Science Foundation with grant EAR-2035260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg A. Valentine.

Additional information

Editorial responsibility: T. Esposti Ongaro

Appendix

Appendix

Modeling approach

The governing equations are conservation of mass, momentum, and energy for a carrier gas phase and for one or two fields of dispersed particles. The equations are written in an Eulerian framework for both the gas and the particle fields, which are treated as overlapping continua with volume fractions within a control volume that sum to unity. Gas and particle fields interact with each other through momentum transfer (drag) and heat transfer. More details can be found in Benyahia et al. (2012), Sweeney and Valentine (2017), and Valentine and Sweeney (2018). The governing equations are as follows (nomenclature in Table

Table 3 Notation for Eqs. 16

3):

$$\frac{\partial }{\partial t}\left({\epsilon }_{\mathrm{g}}{\rho }_{\mathrm{g}}\right)+\frac{\partial }{\partial {x}_{\mathrm{j}}}\left({\epsilon }_{\mathrm{g}}{\rho }_{\mathrm{g}}{U}_{\mathrm{gj}}\right)=0 .$$
(1)
$$\frac{\partial }{\partial t}\left({\epsilon }_{\mathrm{m}}{\rho }_{\mathrm{m}}\right)+\frac{\partial }{\partial {x}_{\mathrm{j}}}\left({\epsilon }_{\mathrm{m}}{\rho }_{\mathrm{m}}{U}_{\mathrm{mj}}\right)=0.$$
(2)
$$\frac{\partial }{\partial t}\left({\epsilon }_{\mathrm{g}}{\rho }_{\mathrm{g}}{U}_{\mathrm{gi}}\right)+\frac{\partial }{\partial {x}_{\mathrm{j}}}\left({\epsilon }_{\mathrm{g}}{\rho }_{\mathrm{g}}{U}_{\mathrm{gj}}{U}_{\mathrm{gi}}\right)=-{\epsilon }_{\mathrm{g}}\frac{\partial {P}_{\mathrm{g}}}{\partial {\mathrm{x}}_{\mathrm{i}}}+\frac{\partial {\tau }_{\mathrm{gij}}}{\partial {x}_{\mathrm{j}}}-\sum_{\mathrm{m}=1}^{M}{I}_{\mathrm{gmi}}+{{\epsilon }_{\mathrm{g}}\rho }_{\mathrm{g}}{g}_{\mathrm{i}}.$$
(3)
$$\frac{\partial }{\partial t}\left({\epsilon }_{\mathrm{m}}{\rho }_{\mathrm{m}}{U}_{\mathrm{mi}}\right)+\frac{\partial }{\partial {x}_{\mathrm{j}}}\left({\epsilon }_{\mathrm{m}}{\rho }_{\mathrm{m}}{U}_{\mathrm{mj}}{U}_{\mathrm{mi}}\right)=-{\epsilon }_{\mathrm{m}}\frac{\partial {P}_{\mathrm{g}}}{\partial {x}_{\mathrm{i}}}+\frac{\partial {\tau }_{\mathrm{mij}}}{\partial {x}_{\mathrm{j}}}+{I}_{\mathrm{gmi}}-\sum_{l=1}^{M}{I}_{\mathrm{mli}}+{\epsilon }_{\mathrm{m}}{\rho }_{\mathrm{m}}{g}_{\mathrm{i}}.$$
(4)
$${\epsilon }_{\mathrm{g}}{\rho }_{\mathrm{g}}{C}_{\mathrm{pg}}\left[\frac{\partial {T}_{\mathrm{g}}}{\partial t}+{U}_{\mathrm{gi}}\frac{\partial {T}_{\mathrm{g}}}{\partial {x}_{\mathrm{j}}}\right]=-\frac{\partial {q}_{\mathrm{gj}}}{\partial {x}_{\mathrm{j}}}+\sum_{m=1}^{M}{\gamma }_{\mathrm{gm}}\left({T}_{\mathrm{m}}-{T}_{\mathrm{g}}\right) +{\gamma }_{\mathrm{Rg}}\left({T}_{\mathrm{Rg}}^{4}-{T}_{\mathrm{g}}^{4}\right).$$
(5)
$${\epsilon }_{\mathrm{m}}{\rho }_{\mathrm{m}}{C}_{\mathrm{pm}}\left[\frac{\partial {T}_{\mathrm{m}}}{\partial t}+{U}_{\mathrm{mj}}\frac{\partial {T}_{\mathrm{m}}}{\partial {x}_{\mathrm{j}}}\right]=-\frac{\partial {q}_{\mathrm{mj}}}{\partial {x}_{\mathrm{j}}}-{\gamma }_{\mathrm{gm}}\left({T}_{\mathrm{m}}-{T}_{\mathrm{g}}\right) +{\gamma }_{\mathrm{Rm}}\left({T}_{\mathrm{Rm}}^{4}-{T}_{\mathrm{m}}^{4}\right).$$
(6)

Constitutive models that describe interphase heat and momentum transfer, and intraphase heat transfer and stress, are found in Syamlal et al. (1993), Syamlal and Pannala (2011), Benyahia et al. (2012), and Sweeney and Valentine (2015, 2017). Valentine and Sweeney (2018) include information related to model validation. In this and similar gas-particle multiphase approaches, stresses within the particle phase (Eq. 4) are modeled as a function of the so-called granular temperature (a.k.a. granular energy), which is a measure of the fluctuation of particle velocities. Here, I use an algebraic approximation for granular temperature rather than a full conservation equation (see Benyahia et al 2012; Breard et al. 2019; Valentine 2020). Additional volcanological applications of the MFIX code can be found in Dartevelle (2004), Dartevelle et al. (2004), Dufek and Bergantz (2007a, b), Dufek and Manga (2008), Dufek et al. 2009), and Breard et al. (2018, 2019).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentine, G.A. Effects of debris entrainment and recycling on explosive volcanic eruption jets and columns. Bull Volcanol 85, 57 (2023). https://doi.org/10.1007/s00445-023-01675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01675-8

Keywords

Navigation