Skip to main content
Log in

Porosity-permeability relationships in crystal-rich basalts from Plinian eruptions

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Magma permeability allows release of exsolved and pressurized volatiles during magma ascent, potentially modulating explosive volcanic eruptions. While porosity-permeability relationships in the clasts from silicic Plinian eruptions have received considerable interests in recent years, knowledge on magma permeability during Plinian eruptions of basaltic magma is lacking. In this study, we investigate the porosity-permeability relationships in pyroclasts from the well-studied Plinian eruptions of basaltic magma at Mt. Tarawera, New Zealand (1886 CE) and Mt. Etna, Italy (122 BCE). We find that Darcian permeabilities in the studied clasts range between approximately 10−12 m2 and 10−10 m2 over a range of total porosity between 48 and 82%. The vesicles are well connected with values of 45–82% for connected porosity. Pyroclasts from the studied Plinian eruptions contain abundant microlites (∼ 60–90 vol. %) in the matrix surrounding vesicles. At a given total porosity, the measured permeabilities are somewhat higher than that measured in the crystal-poor lapilli from less explosive basaltic eruptions, and about 1–2 orders of magnitude higher than that in silicic Plinian clasts. The estimated percolation threshold is ∼34% for the two basaltic Plinian eruptions. Using modeling of ascent of multiphase magma through volcanic conduits during eruptions, we find that the relative timing of crystallization and the onset of percolation might have played a key role in the development of the measured porosity-permeability relationships. Using scaling analysis, we further show that rheological stiffening of basaltic melt due to a high crystal content just prior to magma fragmentation should have stabilized the vesicle networks, preserving textures reflecting the eruptive conditions with insignificant post-eruptive modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Fitting parameter (Eq. 5)

d :

Center-to-center distance between two adjacent spheres (m)

F :

Objective function (Eq. 2)

H :

Thickness of bubble wall (m)

k 1 :

Darcian permeability (m2)

k 2 :

Inertial permeability (m)

L :

Length of cylindrical sample (m)

N :

Number of measured data

P :

Magma pressure (Pa)

P atm :

Atmospheric pressure (Pa)

P frag :

Pressure at fragmentation (Pa)

P in :

Air pressure at the entrance of sample (Pa)

P initial :

Initial magma pressure (Pa)

P out :

Air pressure at the exit of sample (Pa)

P′ :

Pressure gradient (MPa m−1)

\(\hat{P}\) :

Dimensionless pressure

q :

Air velocity (m s−1)

q measured :

Measured air velocity (m s−1)

q predicted :

Predicted air velocity (m s−1)

r :

Vesicle radius (m)

R :

Bubble radius (m)

R s :

Sample radius (m)

α :

Fitting parameter (Eq. 5)

β 1 :

Fitting parameter (Eq. 3)

β 2 :

Fitting parameter (Eq. 3)

η :

Magma viscosity (Pa s)

η g :

Viscosity of gas (Pa s)

φ :

Total porosity

φ conn :

Connected porosity

φ cr :

Critical porosity (percolation threshold)

φ m :

Maximum packing fraction of crystals

φ x :

Volume fraction of crystals in the groundmass

ρ g :

Density of gas (kg m−3)

σ :

Surface tension (N m−1)

τ Ca :

Capillary stress (Pa)

τ y :

Yield stress (Pa)

ξ :

Barrier factor (Eq. 4)

References

  • Alfano F, Ort MH, Pioli L, Self S, Hanson SL, Roggensack K, Allison CM, Amos R, Clarke AB (2019) Subplinian monogenetic basaltic eruption of Sunset Crater, Arizona, USA. Bulletin 131(3-4):661–674

    Google Scholar 

  • Allison CM, Roggensack K, Clarke AB (2021) Highly explosive basaltic eruptions driven by co 2 exsolution. Nat Comm 12(1):1–10

    Article  Google Scholar 

  • Arzilli F, La Spina G, Burton MR, Polacci M, Le Gall N, Hartley ME, Di Genova D, Cai B, Vo NT, Bamber EC et al (2019) Magma fragmentation in highly explosive basaltic eruptions induced by rapid crystallization. Nat Geosci 12(12):1023–1028

    Article  Google Scholar 

  • Bai L, Baker DR, Hill RJ (2010) Permeability of vesicular Stromboli basaltic glass: Lattice Boltzmann simulations and laboratory measurements. J Geophys Res Solid Earth 115(B7)

  • Bai L, Baker DR, Polacci M, Hill RJ (2011) In-situ degassing study on crystal-bearing Stromboli basaltic magmas: implications for Stromboli explosions. Geophys Res Lett 38(17)

  • Bamber EC, Arzilli F, Polacci M, Hartley ME, Fellowes J, Di Genova D, Chavarría D, Saballos JA, Burton MR (2020) Pre-and syn-eruptive conditions of a basaltic Plinian eruption at Masaya Volcano, Nicaragua: the Masaya Triple Layer (2.1 ka). J Volcanol Geotherm Res 392:106761

    Article  Google Scholar 

  • Blower J (2001a) A three-dimensional network model of permeability in vesicular material. Comput Geosci 27(1):115–119

    Article  Google Scholar 

  • Blower J (2001b) Factors controlling permeability-porosity relationships in magma. Bull Volcanol 63(7):497–504

    Article  Google Scholar 

  • Brenner MP, Gueyffier D (1999) On the bursting of viscous films. Phys Fluids 11(3):737–739

    Article  Google Scholar 

  • Burgisser A, Chevalier L, Gardner JE, Castro JM (2017) The percolation threshold and permeability evolution of ascending magmas. Earth Planet Sci Lett 470:37–47

    Article  Google Scholar 

  • Campagnola S, Romano C, Mastin L, Vona A (2016) Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contrib Mineral Petrol 171(6):60

    Article  Google Scholar 

  • Cashman KV (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib Mineral Petrol 113(1):126–142

    Article  Google Scholar 

  • Cashman KV, Scheu B (2015) Magmatic fragmentation. Encyclopedia of Volcanoes:459–471

  • Colombier M, Wadsworth FB, Gurioli L, Scheu B, Kueppers U, Di Muro A, Dingwell DB (2017) The evolution of pore connectivity in volcanic rocks. Earth Planet Sci Lett 462:99–109

    Article  Google Scholar 

  • Colombier M, Wadsworth FB, Scheu B, Vasseur J, Dobson K, Cáceres F, Allabar A, Marone F, Schlepütz C, Dingwell DB (2020) In situ observation of the percolation threshold in multiphase magma analogues. Bull Volcanol 82(4):1–15

    Article  Google Scholar 

  • Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geology 26:1095–1098

    Article  Google Scholar 

  • Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geotherm Res 189(3-4):207–224

    Article  Google Scholar 

  • Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris

    Google Scholar 

  • Degruyter W, Bachmann O, Burgisser A, Manga M (2012) The effects of outgassing on the transition between effusive and explosive silicic eruptions. Earth Planet Sci Lett 349-350:161–170

    Article  Google Scholar 

  • Eichelberger J, Carrigan C, Westrich H, Price R (1986) Non-explosive silicic volcanism. Nature:598–602

  • Forchheimer P (1900) Wasserbewegung durch Boden: Zeit. Ver Deut Ing 45:1781–1788

    Google Scholar 

  • Gardner JE, Ketcham RA (2011) Bubble nucleation in rhyolite and dacite melts: temperature dependence of surface tension. Contrib Mineral Petrol 162:929–943

    Article  Google Scholar 

  • Goepfert K, Gardner JE (2010) Influence of pre-eruptive storage conditions and volatile contents on explosive Plinian style eruptions of basic magma. Bull Volcanol 72:511–521

    Article  Google Scholar 

  • Gonnermann HM, Giachetti T, Fliedner C, Nguyen CT, Houghton BF, Crozier JA, Carey RJ (2017) Permeability during magma expansion and compaction. J Geophys Res Solid Earth 122(12):9825–9848

    Article  Google Scholar 

  • Gonnermann HM (2015) Magma fragmentation. Ann Rev Earth Planet Sci Lett 43:431–458

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356

    Article  Google Scholar 

  • Hajimirza S, Gonnermann HM, Gardner JE, Giachetti T (2019) Predicting homogeneous bubble nucleation in rhyolite. J Geophys Res Solid Earth 124(3):2395–2416

    Article  Google Scholar 

  • Houghton BF, Tisdale CM, Llewellin EW, Taddeucci J, Orr TR, Walker BH, Patrick MR (2020) The birth of a Hawaiian fissure eruption. J Geophys Res Solid Earth e2020JB020903

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde 68:117–140

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Carlo PD, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137:1–14

    Article  Google Scholar 

  • Innocentini M, Salvini V, Pandolfelli V, Coury J (1999) Assessment of Forchheimer’s equation to predict the permeability of ceramic foams. J Am Ceram Soc 82(7):1945–1948

    Article  Google Scholar 

  • Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102(3-4):413–429

    Article  Google Scholar 

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100

    Article  Google Scholar 

  • La Spina G, Polacci M, Burton M, Vitturi MDM (2017) Numerical investigation of permeability models for low viscosity magmas: application to the 2007 Stromboli effusive eruption. Earth Planet Sci Lett 473:279–290

    Article  Google Scholar 

  • La Spina G, Arzilli F, Llewellin EW, Burton MR, Clarke AB, Vitturi MDM, Polacci M, Hartley ME, Genova DD, Mader HM (2021) Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing. Earth Planet Sci Lett 553:116658

    Article  Google Scholar 

  • Lejeune AM, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res Solid Earth 100(B3):4215–4229

    Article  Google Scholar 

  • Lindoo A, Larsen J, Cashman K, Dunn A, Neill O (2016) An experimental study of permeability development as a function of crystal-free melt viscosity. Earth Planet Sci Lett 435:45–54

    Article  Google Scholar 

  • Lindoo A, Larsen J, Cashman K, Oppenheimer J (2017) Crystal controls on permeability development and degassing in basaltic andesite magma. Geology 45(9):831–834

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158

    Article  Google Scholar 

  • McBirney AR, Murase T (1984) Rheological properties of magmas. Annu Rev Earth Planet Sci 12(1):337–357

    Article  Google Scholar 

  • Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143(1-3):53–68

    Article  Google Scholar 

  • Moitra P, Horvath DG, Andrews-Hanna JC (2021) Investigating the roles of magmatic volatiles, ground ice and impact-triggering on a very recent and highly explosive volcanic eruption on Mars. Earth Planet Sci Lett 567:116986

    Article  Google Scholar 

  • Moitra P, Gonnermann HM, Houghton BF, Tiwary CS (2018a) Fragmentation and Plinian eruption of crystallizing basaltic magma. Earth Planet Sci Lett 500:97–104

    Article  Google Scholar 

  • Moitra P, Sonder I, Valentine GA (2018b) Effects of size and temperature-dependent thermal conductivity on the cooling of pyroclasts in air. Geochem Geophys Geosyst 19(10):3623–3636

    Article  Google Scholar 

  • Moitra P, Gonnermann HM (2015) Effects of crystal shape- and size- modality on magma rheology. Geochem Geophys Geosyst 16(1):1–26

    Article  Google Scholar 

  • Moitra P, Gonnermann HM, Houghton BF, Giachetti T (2013) Relating vesicle shapes in pyroclasts to eruption styles. Bull Volcanol 75(2):1–14

    Article  Google Scholar 

  • Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36:399–402

    Article  Google Scholar 

  • Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169:48–60

    Article  Google Scholar 

  • Nguyen CT, Gonnermann HM, Houghton BF (2014) Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42(8):703–706

    Article  Google Scholar 

  • Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281(3):267–274

    Article  Google Scholar 

  • Pal R (2003) Rheological behavior of bubble-bearing magmas. Earth Planet Sci Lett 207(1–4):165–179

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107

    Article  Google Scholar 

  • Polacci M, Baker DR, La Rue A, Mancini L, Allard P (2012) Degassing behaviour of vesiculated basaltic magmas: an example from Ambrym volcano, Vanuatu Arc. J Volcanol Geotherm Res 233-234:55–64

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Anderson AT (1993a) Dynamics of diffusive bubble-growth in magmas - isothermal case. J Geophys Res Solid Earth 98:22283–22307

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Kutolin VA (1993b) Stability of foams in silicate melts. J Volcanol Geotherm Res 59(1-2):161–178

    Article  Google Scholar 

  • Reynolds O (1901) Papers on mechanical and physical subjects. Cambridge University Press.

  • Rust AC, Cashman KV (2004) Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth Planet Sci Lett 228(1-2):93–107

    Article  Google Scholar 

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth 116:B11202

    Article  Google Scholar 

  • Saar MO, Manga M (1999) Permeability-porosity relationships in vesicular basalts. Geophys Res Lett 26(1):111–114

    Article  Google Scholar 

  • Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. In: Thordarson T, Self S, Larsen J, Rowland K, Hoskuldsson A (eds) Studies in Volcanology: The Legacy of George Walker. Geol Soc, London, pp 129–154

    Chapter  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Szramek LA (2016) Mafic Plinian eruptions: Is fast ascent required? J Geophys Res Solid Earth 121(10):7119–7136

    Article  Google Scholar 

  • Taddeucci J, Edmonds, M, Houghton B, James MR, Vergniolle S (2015) Hawaiian and Strombolian eruptions. Encyclopedia of Volcanoes 485–503

  • Takeuchi S, Nakashima S, Tomiya A (2008) Permeability measurements of natural and experimental volcanic materials with a simple permeameter: toward an understanding of magmatic degassing processes. J Volcanol Geotherm Res 177(2):329–339

    Article  Google Scholar 

  • Toramaru A (1988) Formation of propagation pattern in two-phase flow systems with application to volcanic eruptions. Geophys J Int 95(3):613–623

    Article  Google Scholar 

  • Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res Solid Earth 100:1913–1931

    Article  Google Scholar 

  • Truby J, Mueller S, Llewellin E, Mader H (2015) The rheology of three-phase sus- pensions at low bubble capillary number. Proc R Soc Lond A, Math Phys Eng Sci 471(2173):20140557

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177(4):857–873

    Article  Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera 1886, New Zealand - a basaltic Plinian fissure eruption. J Volcanol Geotherm Res 21:61–78

    Article  Google Scholar 

  • Walsh SD, Saar MO (2008) Magma yield stress and permeability: insights from multiphase percolation theory. J Volcanol Geotherm Res 177(4):1011–1019

    Article  Google Scholar 

  • Williams SN (1983) Plinian airfall deposits of basaltic composition. Geology 11(4):211–214

    Article  Google Scholar 

  • Wright HM, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69(3):281–300

    Article  Google Scholar 

  • Wilson L (2009) Volcanism in the solar system. Nat Geosci 2(6):389–397

    Article  Google Scholar 

  • Horvath DG, Moitra P, Hamilton CW, Craddock RA, Andrews-Hanna JC (2021) Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus 365:114499

Download references

Acknowledgements

The authors would like to acknowledge Helge M Gonnermann and Josh Crozier for laboratory help, and Thomas Giachetti and Chinh T Nguyen for useful discussions. We thank the editors A Harris and R. Cioni, as well as F. Arzilli and an anonymous reviewer for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranabendu Moitra.

Additional information

Editorial responsibility: R. Cioni

Supplementary Information

ESM 1

(PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moitra, P., Houghton, B.F. Porosity-permeability relationships in crystal-rich basalts from Plinian eruptions. Bull Volcanol 83, 71 (2021). https://doi.org/10.1007/s00445-021-01496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01496-7

Keywords

Navigation