Skip to main content
Log in

Synthetic benchmarking of concentrated pyroclastic current models

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Validation and benchmarking of pyroclastic current (PC) models is required to evaluate their performance and their reliability for hazard assessment. Here, we present results of a benchmarking initiative built to evaluate four models commonly used to assess concentrated PC hazard: SHALTOP, TITAN2D, VolcFlow, and IMEX_SfloW2D. The benchmark focuses on the simulation of channelized flows with similar source conditions over five different synthetic channel geometries: (1) a flat incline plane, (2) a channel with a sharp 45° bend, (3) a straight channel with a break-in-slope, (4) a straight channel with an obstacle, and (5) a straight channel with a constriction. Several outputs from 60 simulations using three different initial volume fluxes were investigated to evaluate the performance of the four models when simulating valley-confined PC kinematics, including overflows induced by topographic changes. Quantification of the differences obtained between model outputs at t = 100 s allowed us to identify (1) issues with the Voellmy-Salm implementation of TITAN2D and (2) small discrepancies between the three other codes that are either due to various curvature and velocity formulations and/or numerical frameworks. Benchmark results were also in agreement with field observations of natural PCs: a sudden change in channel geometries combined with a high-volume flux is key to generate overflows. The synthetic benchmarks proved to be useful for evaluating model performance, needed for PC hazard assessment. The overarching goal is to provide an interpretation framework for volcanic mass flow hazard assessment studies to the geoscience community.

Résumé

La validation et l'analyse comparative des modèles numériques d’écoulements pyroclastiques sont nécessaires pour estimer leur performance et leur fiabilité lors de l'évaluation des risques naturels. Nous présentons ici les résultats d’une inter-comparaison de quatre modèles numériques couramment utilisés pour l’évaluation des risques causés par les écoulements pyroclastiques concentrés (EPC) : SHALTOP, TITAN2D, VolcFlow et IMEX_SfloW2D. L’analyse se concentre sur la simulation d'écoulements, ayant des conditions source similaires, sur cinq topographies numériques différentes : 1) un plan incliné plat, 2) un chenal avec un virage aigu à 45°, 3) un chenal droit avec une rupture de pente, 4) un chenal droit avec un obstacle, et 5) un chenal droit avec un rétrécissement. Afin d’évaluer précisément la capacité des quatre modèles à simuler la dynamique des EPC dans un chenal, ainsi que celle des débordements induits par les changements topographiques, trois flux volumiques différents à la source ont été utilisés. La quantification des différences obtenues entre les résultats des modèles à t = 100 s nous a permis d'identifier : 1) des problèmes d’implémentation de la rhéologie Voellmy-Salm dans TITAN2D, et 2) de légères divergences entre les trois autres codes, dues soit à des formulations différentes de la courbure de la topographie et/ou de la vitesse, soit à des schémas numériques différents. Les résultats de l’analyse sont également en accord avec les observations de terrain des EPC naturels : un changement soudain de la géométrie du chenal combiné à un flux volumique local élevé semble être les clés pour générer des débordements. Cette inter-comparaison synthétique s’est montrée très efficace pour évaluer la performance des modèles numériques. L'objectif global étant de proposer à la communauté des Géosciences un cadre d'étude pour l'évaluation des risques liés aux écoulements gravitaires d’origine volcanique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

A community effort for benchmarking of PC numerical models was initiated during a dedicated workshop at the IAVCEI 2013 general assembly in Kagoshima, Japan, followed by a second workshop in New Zealand in 2019. The authors would like to thank all participants for their contributions and discussion, which was inspirational to this work. We also thank G. Valentine for his editorial work and P. Tierz as well as two anonymous reviewers for their constructive and detailed reviews of this manuscript.

Availability of data and material

The benchmark procedure, the five DEMs, model inputs and model outputs for all simulations used in this study are available upon request on the Vhub portal at: https://vhub.org/groups/benchmarking_models

Code availability

VolcFlow is available at: https://lmv.uca.fr/volcflow/

TITAN2D is available in its Vhub version at: https://vhub.org/resources/titan2d or can be downloaded from GitHub at: https://github.com/TITAN2D/titan2d

IMEX_SfloW2D is available at: https://github.com/demichie/IMEX_SfloW2D

SHALTOP is available upon request to Anne Mangeney and/or François Bouchut.

Funding

This work was supported by the National Science Foundation (NSF) CAREER grant #1751905.

Author information

Authors and Affiliations

Authors

Contributions

SC and VG designed the study. Numerical simulations for VolcFlow, SHALTOP, and TITAN2D were performed by VG and by TEO for IMEX_Sflow2D. Data collection and analysis were performed by VG. Interpretations were first performed by VG, SC, TEO, and MP. The first draft of the manuscript was written by VG, and all the authors commented on previous versions of the manuscript, contributed to the interpretation, and suggested additional tests. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Gueugneau.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Editorial responsibility: G.A. Valentine; Deputy Executive Editor: J. Tadeucci

This paper constitutes part of a topical collection: Pyroclastic current models: benchmarking and validation

Supplementary information

ESM 1

(DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueugneau, V., Charbonnier, S., Esposti Ongaro, T. et al. Synthetic benchmarking of concentrated pyroclastic current models. Bull Volcanol 83, 75 (2021). https://doi.org/10.1007/s00445-021-01491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01491-y

Keywords

Navigation