Skip to main content

Advertisement

Log in

Satellite observations of the 2016–2017 eruption of Bogoslof volcano: aviation and ash fallout hazard implications from a water-rich eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Satellite data (GOES, VIIRS, MODIS, AVHRR) were used in near real-time during the 2016–2017 eruption of Bogoslof volcano, Alaska, to detect explosive eruptive activity and to characterize the resulting volcanic clouds. This study examines satellite data to estimate volcanic cloud heights and mass eruption rates for 47 of the 70 explosive events. Eighteen of the volcanic clouds reached an altitude in excess of 8.5 km asl, where they posed a potential hazard to aviation. We estimate eruption rates were in the range of 104–107 kg/s. Eruption durations were available for 28 events, and the total mass of these events was 5.7 × 1010 kg. Most of the explosions occurred from submarine vents, producing volcanic clouds with water-rich characteristics in satellite data. We infer that these water-rich (phreatomagmatic) events contained ice-coated ash particles, which changed their visible and multispectral characteristics. Only two of the explosions produced clouds with satellite characteristics that would be considered ash-rich. We conclude that these events were relatively dry eruptions with limited access to ocean water. Although some of the explosive events transitioned from submarine to subaerial vents, we observed no change in the character of the volcanic clouds during these transitions. We speculate that enhanced removal of fine-grained volcanic ash likely occurred due to aggregation, with implications for modeling ash transport and fallout. We conclude that the majority of Bogoslof’s water-rich volcanic clouds did contain volcanic ash despite the lack of conventional “ash signature” in satellite data. This has implications for satellite monitoring of future water-rich/shallow submarine eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Casadevall TJ (1994) The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations. J Volcanol Geotherm Res 62(1–4):301–316

    Article  Google Scholar 

  • Coombs ML, Wech AG, Haney MM, Lyons JJ, Schneider DJ, Schwaiger HF, Wallace KL, Fee D, Freymueller JT, Schaefer JR, Tepp G (2018) Short-term forecasting and detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska. Front Earth Sci 6(122). https://doi.org/10.3389/feart.2018.00122

  • Coombs M, Wallace K, Cameron C, Lyons J, Wech A, Angeli K, Cervelli P (2019) Overview, chronology, and impacts of the 2016–2017 eruption of Bogoslof volcano, Alaska. Bull Volcanol 81:62. https://doi.org/10.1007/s00445-019-1322-9

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 656: 553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Durant A, Shaw RA, Rose WI, Mi Y, Ernst G (2008) Ice nucleation and overseeding of ice in volcanic clouds. J Geophys Res 113. https://doi.org/10.1029/2007JD009064

  • Ewert JW, Guffant M, Murray TL (2005) An assessment of volcanic threat and monitoring capabilities in the United States: framework for a National Volcano Early Warning System (No. 2005-1164). US Geological Survey. https://doi.org/10.3133/ofr20051164

  • Fee D, Lyons J, Haney M, Wech A, Waythomas C, Diefenbach AK, Lopez T, Eaton AV, Schneider D (2020) Seismo-acoustic evidence for vent drying during shallow submarine eruptions at Bogoslof volcano, Alaska. Bull Volcanol 82:2. https://doi.org/10.1007/s00445-019-1326-5

  • Guffanti M, Tupper A (2015) Volcanic ash hazards and aviation risk. In Pappale P (ed) Volcanoes and volcanic hazards and disasters. Elsevier, Amsterdam, p 87–108

    Chapter  Google Scholar 

  • Guffanti M, Schneider DJ, Wallace KL, Hall T, Bensimon DR, Salinas LJ (2010) Aviation response to a widely dispersed volcanic ash and gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA. J Geophys Res 115. https://doi.org/10.1029/2010JD013868

  • Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 112(5):720–726

    Article  Google Scholar 

  • Langmann B, Folch A, Hensch M, Matthias V (2012) Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010. Atmos Environ 48:1–8

    Article  Google Scholar 

  • Larsen JF, Sliwinski MG, Nye C, Cameron C, Schaefer JR (2013) The 2008 eruption of Okmok volcano, Alaska: petrological and geochemical constraints on the subsurface magma plumbing system. J Geophys Res 264:85–106. https://doi.org/10.1016/j.jvolgeores.2013.07.003

    Article  Google Scholar 

  • Loewen MW, Izbekov P, Moshrefzadeh J, Coombs M, Larsen J, Graham N, Harbin M, Waythomas C, Wallace K (2019) Petrology of the 2016–2017 eruption of Bogoslof Island, Alaska. Bull Volcanol 81:72. https://doi.org/10.1007/s00445-019-1333-6

  • Lopez T, Clarisse L, Schwaiger H, Van Eaton A, Loewen M, Fee D, Lyons J, Wallace K, Searcy C, Wech A, Haney M, Schneider D, Graham N (2020) Constraints on eruption processes and event masses for the 2016–2017 eruption of Bogoslof volcano, Alaska, through evaluation of IASI satellite SO2 masses and complementary datasets. Bull Volcanol 82:17. https://doi.org/10.1007/s00445-019-1348-z

  • Lyons JJ, Haney MM, Fee D, Wech AG, Waythomas CF (2019) Infrasound from giant bubbles during explosive submarine eruptions. Nat Geosci 12:952–958. https://doi.org/10.1038/s41561-019-0461-0

    Article  Google Scholar 

  • Lyons JJ, Iezzi AM, Fee D, Schwaiger HF, Wech AG, Haney MM (2020) Infrasound generated by the 2016–2017 shallow submarine eruption of Bogoslof volcano, Alaska. Bull Volcanol 82:19. https://doi.org/10.1007/s00445-019-1355-0

  • Mastin LG (2007) A user-friendly one-dimensional model for wet volcanic plumes. Geochem Geophys Geosyst 8:Q03014. https://doi.org/10.1029/2006GC001455

    Article  Google Scholar 

  • Mastin LG (2014) Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate. J Geophys Res 119:2474–2495. https://doi.org/10.1002/2013JD020604

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21. https://doi.org/10.1016/j.jvolgeores.2009.01.008

    Article  Google Scholar 

  • Pavolonis MJ, Heidinger AK, Sieglaff J (2013) Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J Geophys Res Atmos 118:1436–1458. https://doi.org/10.1002/jgrd.50173

    Article  Google Scholar 

  • Pavolonis MJ, Sieglaff J, Cintineo J (2015) Spectrally enhanced cloud objects—a generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis. J Geophys Res Atmos 120:7813–7841. https://doi.org/10.1002/2014JD022968

    Article  Google Scholar 

  • Pavolonis MJ, Sieglaff J, Cintineo J (2018) Automated Detection Explosive Volcanic, Eruptions Using Satellite-Derived Cloud Vertical Growth Rates. Earth Space Sci 12:903–928. https://doi.org/10.1029/2018ea000410

    Article  Google Scholar 

  • Prata AJ (1989) Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int J Remote Sens 10(4–5):751–761

    Article  Google Scholar 

  • Rose WI, Delene DJ, Schneider DJ, Bluth GJS, Krueger AJ, Sprod I, Mckee C, Davies HL, Ernst GGJ (1995) Ice in the 1994 Rabaul eruption cloud—implications for volcano Hazard and atmospheric effects. Nat 375(6531):477–479. https://doi.org/10.1038/375477a0

    Article  Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93(B7):7993

    Article  Google Scholar 

  • Schneider DJ, Hoblitt RP (2013) Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:133–144. https://doi.org/10.1016/j.jvolgeores.2012.11.004

    Article  Google Scholar 

  • Schneider DJ, Rose WI, Kelley L (1995) Tracking of 1992 crater peak/spurr eruption clouds using AVHRR. U.S. Geol Den Surv Bull 2139:27–36

    Google Scholar 

  • Searcy CK, Power JA (2019) Seismic character and progression of explosive activity during the 2016–2017 eruption of Bogoslof volcano, Alaska. Alaska Bull Volcanol 82:12. https://doi.org/10.1007/s00445-019-1343-4

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic Plumes. Wiley, Chichester 574 pp

    Google Scholar 

  • Tepp G, Dziak RP, Haney MM, Lyons JJ, Searcy C, Matsumoto H, Haxel J (2020) Seismic and hydroacoustic observations of the 2016–17 Bogoslof eruption. Bull Volcanol 82:4. https://doi.org/10.1007/s00445-019-1344-3

  • Van Eaton AR, Herzog M, Wilson CJN, McGregor J (2012) Ascent dynamics of large phreatomagmatic eruption clouds: the role of microphysics. J Geophys Res 117:B03203. https://doi.org/10.1029/2011JB008892

    Article  Google Scholar 

  • Van Eaton AR, Mastin LG, Herzog M, Schwaiger HF, Schneider DJ, Wallace KL, Clarke AB (2015) Hail formation triggers rapid ash aggregation in volcanic plumes. Nat Commun 6:7860. https://doi.org/10.1038/ncomms8860

    Article  Google Scholar 

  • Van Eaton AR, Schneider DJ, Smith CM, Haney MM, Lyons JJ, Said R, Fee D, Holzworth RH, Mastin LG (2020) Did ice-charging generate volcanic lightning during the 2016–2017 eruption of Bogoslof volcano, Alaska? Bull Volcanol 82:24. https://doi.org/10.1007/s00445-019-1350-5

  • Wallace KL, Schaefer JR, Coombs ML (2013) Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of redoubt volcano, Alaska—highlighting the significance of particle aggregation. J Volcanol Geotherm Res 259:145–169. https://doi.org/10.1016/j.jvolgeores.2012.09.015

    Article  Google Scholar 

  • Waythomas CF, Scott WE, Prejean SG, Schneider DJ, Izbekov P, Nye CJ (2010) The 7–8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska. J Geophys Res 115:B00B06. https://doi.org/10.1029/2010jb007437

    Article  Google Scholar 

  • Waythomas CF, Angeli K, Wessels RL (2020) Evolution of the submarine-subaerial edifice of Bogoslof volcano, Alaska, during its 2016–2017 eruption based on analysis of satellite imagery. Bull Volcanol 82:21. https://doi.org/10.1007/s00445-020-1363-0

  • Wen S, Rose WI (1994) Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J Geophys Res 99(D3):5421

    Article  Google Scholar 

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth Parts A/B/C 45–46:5–23

    Article  Google Scholar 

  • Woods AW (1993) Moist convection and the injection of volcanic ash into the atmosphere. J Geophys Res 98:17627–17636

    Article  Google Scholar 

  • Woods AW, Self S (1992) Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height. Nat. 355:628–630

    Article  Google Scholar 

  • Zakšek K, Hort M, Zaletelj J, Langmann B (2013) Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites. Atmos Chem Phys 13(5):2589–2606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Schneider.

Additional information

Editorial responsibility: J.J. Lyons; Special Issue Editor N. Fournier

This paper constitutes part of a topical collection: The 2016-17 shallow submarine eruption of Bogoslof volcano, Alaska

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, D.J., Van Eaton, A.R. & Wallace, K.L. Satellite observations of the 2016–2017 eruption of Bogoslof volcano: aviation and ash fallout hazard implications from a water-rich eruption. Bull Volcanol 82, 29 (2020). https://doi.org/10.1007/s00445-020-1361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-1361-2

Keywords

Navigation