Skip to main content
Log in

Estimating eruptive parameters and related uncertainties for pyroclastic density currents deposits: worked examples from Somma-Vesuvius (Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The quantification of the maximum runout, invaded area, volume, and total grain-size distribution (TGSD) of pyroclastic density currents (PDC) is a critically important task because such parameters represent the needed necessary input quantities for physical modeling and hazard assessment of PDCs. In this work, new and well-established methods for the quantification of these parameters are applied to a large stratigraphic dataset of three PDC units from two eruptions of Somma-Vesuvius (the AD 79 Pompeii and the AD 472 Pollena eruptions), representative of a large spectrum of transport and depositional processes. Maximum runout and invaded area are defined on the basis of the available volcanological and topographical constraints. The related uncertainties are evaluated with an expert judgment procedure, which considersed the different sectors of the volcano separately. Quite large uncertainty estimates of dispersal area (20–40%) may have important implications in terms of hazard assessment. The testing of different methods for estimating the volume (and mass) of a PDC deposit suggests that integration, over the invaded area, of thickness (and deposit density) data using the triangulated irregular network method can minimize and localize data extrapolation. Such calculations, however, bear an intrinsic additional uncertainty (at least 10% of the total PDC deposit) related to loss or new formation of fine material during transport (at least 10% of the total PDC deposit). Different interpolation methods for TGSD produce multimodal distributions, likely reflecting the different response of each grain size class to transport and deposition processes. These data, when integrated with information on the related co-ignimbrite deposits, can give a more accurate picture of the pyroclastic mixture feeding the current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews BJ, Manga M (2011) Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology 39:1099–1102. https://doi.org/10.1130/G32226.1

    Article  Google Scholar 

  • Aravena A, Cioni R, Bevilacqua A, de’ Michieli Vitturi M, Esposti Ongaro T, Neri A (2020) Tree-branching based enhancement of kinetic energy models for reproducing channelization processes of pyroclastic density currents. J Geophys Res Solid Earth. https://doi.org/10.1029/2019JB019271

  • Bevilacqua A (2016) Doubly stochastic models for volcanic vent opening probability and pyroclastic density current hazard at Campi Flegrei caldera. PhD, Scuola Normale Superiore

  • Bevilacqua A, Isaia R, Neri A, Vitale S, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Esposti Ongaro T, Iannuzzi E, Pistolesi M, Rosi M (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: I. Vent opening maps. J Geophys Res Solid Earth 120:2309–2329. https://doi.org/10.1002/2014JB011775

    Article  Google Scholar 

  • Bevilacqua A, Neri A, Bisson M, Esposti Ongaro T, Flandoli F, Isaia R, Rosi M, Vitale S (2017) The effects of vent location, event scale, and time forecasts on pyroclastic density current hazard maps at Campi Flegrei caldera (Italy). Front Earth Sci 5:72. https://doi.org/10.3389/feart.2017.00072

    Article  Google Scholar 

  • Biagioli G, Bevilacqua A, Esposti Ongaro T, de’ Michieli Vitturi M (2019) PyBox: a Python tool for simulating the kinematics of pyroclastic density currents with the box-model approach Reference and user’s guide. https://doi.org/10.5281/zenodo.2616551

  • Biass S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part 1: hazard assessment. Nat Hazards Earth Syst Sci 14:2265. https://doi.org/10.5194/nhess-14-2265-2014

    Article  Google Scholar 

  • Bisson M, Del Carlo P (2013) A GIS-based application for volume estimation and spatial distribution analysis of tephra fallout: a case study of the 122 BC Etna eruption. Ann Geophys 56:0105. https://doi.org/10.4401/ag-6144

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. https://doi.org/10.1007/s00445-004-0386-2

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites vol 27. Memoirs. Geological Society, London

  • Breard ECP, Jones JR, Fullard L, Lube G, Davies C, Dufek J (2019) The permeability of volcanic mixtures—implications for pyroclastic currents. J Geophys Res Solid Earth 124:1343–1360. https://doi.org/10.1029/2018JB016544

    Article  Google Scholar 

  • Burt ML, Wadge G, Curnow RN (2001) An objective method for mapping hazardous flow deposits from the stratigraphic record of stratovolcanoes: a case example from Montagne Pelée. Bull Volcanol 63:98–111. https://doi.org/10.1007/s004450100128

    Article  Google Scholar 

  • Carey S, Sigurdsson H, Mandeville C, Bronto S (1996) Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volcanol 57:493–511. https://doi.org/10.1007/BF00304435

    Article  Google Scholar 

  • Cioni R, Marianelli P, Sbrana A (1992) Dynamics of the AD 79 eruption: stratigraphic, sedimentological and geochemical data on the successions from the Somma-Vesuvius southern and eastern sectors. Acta Vulcanol 2:109–123

    Google Scholar 

  • Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the AD 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res Solid Earth 109. https://doi.org/10.1029/2002JB002251

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. https://doi.org/10.1016/j.jvolgeores.2008.04.024

    Article  Google Scholar 

  • Cole PD, Calder ES, Druitt TH, Hoblitt RP, Robertson R, Sparks RSJ, Young SR (1998) Pyroclastic flows generated by gravitational instability of the 1996–97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys Res Lett 25:3425–3428. https://doi.org/10.1029/98GL01510

    Article  Google Scholar 

  • Cooke RM (1991) Experts in uncertainty: opinion and subjective probability in science

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation USGS Bullettin

  • Di Muro A, Neri A, Rosi M (2004) Contemporaneous convective and collapsing eruptive dynamics: the transitional regime of explosive eruptions. Geophys Res Lett:31. https://doi.org/10.1029/2004GRL019709

  • Druitt TH (1998) Pyroclastic density currents, vol 145. Geological Society, London, Special Publications, pp 145–182. https://doi.org/10.1144/GSL.SP.1996.145.01.08

    Book  Google Scholar 

  • Dufek J, Esposti Ongaro T, Roche O (2015) Pyroclastic density currents: processes and models. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) The encyclopedia of volcanoes. Academic Press, pp 617–629. https://doi.org/10.1016/B978-0-12-385938-9.00035-3

  • Engwell SL, de’ Michieli Vitturi M, Esposti Ongaro T, Neri A (2016) Insights into the formation and dynamics of coignimbrite plumes from one-dimensional models. J Geophys Res Solid Earth 121:4211–4231. https://doi.org/10.1002/2016JB012793

    Article  Google Scholar 

  • Esposti Ongaro T, Clarke AB, Voight B, Neri A, Widiwijayanti C (2012) Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens J Geophys Res: Solid Earth (1978–2012)117

  • Esposti Ongaro T, Orsucci S, Cornolti F (2016) A fast, calibrated model for pyroclastic density currents kinematics and hazard. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2016.08.002

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167. https://doi.org/10.1007/BF00278005

    Article  Google Scholar 

  • Flandoli F, Giorgi E, Aspinall WP, Neri A (2011) Comparison of a new expert elicitation model with the classical model, equal weights and single experts, using a cross-validation technique. Reliab Eng Syst Saf 96:1292–1310. https://doi.org/10.1016/j.ress.2011.05.012

    Article  Google Scholar 

  • Gueugneau V, Kelfoun K, Charbonnier SJ, Germa A, Carazzo G (2020) Dynamic and impacts of the May 8th, 1902 pyroclastic current at Mount Pelée (Martinique): new insights from numerical modelling. Front Earth Sci. https://doi.org/10.3389/feart.2020.00279

  • Gurioli L (1999) Flussi piroclastici: classificazione e meccanismi di messa in posto. PhD thesis, University of Pisa

  • Gurioli L, Cioni R, Bertagna C (1999) I depositi di flusso piroclastico dell’eruzione del 79 dC caratterizzazione stratigrafica, sedimentologica e modelli di trasporto e deposizione. Atti Soc Tosc Sci Nat Mem Serie A 106:61–72

    Google Scholar 

  • Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology 33:441–444

    Article  Google Scholar 

  • Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition. J Geophys Res Solid Earth 112. https://doi.org/10.1029/2006JB004444

  • Gurioli L, Sulpizio R, Cioni R, Sbrana A, Santacroce R, Luperini W, Andronico D (2010) Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. Bull Volcanol 72:1021–1038. https://doi.org/10.1007/s00445-010-0379-2

    Article  Google Scholar 

  • Isaia R, D’Antonio M, Dell’Erba F, Di Vito MA, Orsi G (2004) The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133:171–192. https://doi.org/10.1016/S0377-0273(03)00397-4

    Article  Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche. Chile J Geophys Res: Solid Earth 110. https://doi.org/10.1029/2005JB003758

  • Kueppers U, Putz C, Spieler O, Dingwell DB (2012) Abrasion in pyroclastic density currents: insights from tumbling experiments. Phys Chem Earth, Parts A/B/C 45:33–39. https://doi.org/10.1016/j.pce.2011.09.002

    Article  Google Scholar 

  • Lee DT, Schachter BJ (1980) Two algorithms for constructing a Delaunay triangulation Internat J Comput Inform Sci 3:219–241

  • Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–640. https://doi.org/10.1126/science.217.4560.637

    Article  Google Scholar 

  • Manga M, Patel A, Dufek J (2011) Rounding of pumice clasts during transport: field measurements and laboratory studies. Bull Volcanol 73:321–333. https://doi.org/10.1007/s00445-010-0411-6

    Article  Google Scholar 

  • Mueller SB, Kueppers U, Ayris PM, Jacob M, Dingwell DB (2016) Experimental volcanic ash aggregation: internal structuring of accretionary lapilli and the role of liquid bonding. Earth Planet Sci Lett 433:232–240. https://doi.org/10.1016/j.epsl.2015.11.007

    Article  Google Scholar 

  • Neri A, Di Muro A, Rosi M (2002) Mass partition during collapsing and transitional columns by using numerical simulations. J Volcanol Geotherm Res 115:1–18. https://doi.org/10.1016/S0377-0273(01)00304-3

    Article  Google Scholar 

  • Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, Andronico D, Barsotti S, Cole PD, Esposti Ongaro T (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:397–415. https://doi.org/10.1016/j.jvolgeores.2008.05.014

    Article  Google Scholar 

  • Neri A, Esposti Ongaro T, Voight B, Widiwijayanti C (2014) Pyroclastic density current hazards and risk Volcanic Hazards. Risks Disasters:109–140. https://doi.org/10.1016/B978-0-12-396453-3.00005-8

  • Neri A, Bevilacqua A, Esposti Ongaro T, Isaia R, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Iannuzzi E (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: II. Pyroclastic density current invasion maps. J Geophys Res Solid Earth 120:2330–2349. https://doi.org/10.1002/2014JB011776

    Article  Google Scholar 

  • Patra AK, Bauer AC, Nichita CC, Pitman EB, Sheridan MF, Bursik MI, Rupp B, Webber A, Stinton AJ, Namikawa LM (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21. https://doi.org/10.1016/j.jvolgeores.2004.06.014

    Article  Google Scholar 

  • Patra AK, Bevilacqua A, Safei AA Analyzing complex models using data and statistics. In: International conference on computational science, 2018. Springer, pp 724–736. doi: https://doi.org/10.1007/978-3-319-93701-4_57

  • Patra AK, Bevilacqua A, Akhavan-Safaei A, Pitman EB, Bursik MI, Hyman D (2020) Comparative analysis of the structures and outcomes of geophysical flow models and modeling assumptions using uncertainty quantification. Front Earth Sci. https://doi.org/10.3389/feart.2020.00275

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15. https://doi.org/10.1007/BF01086757

    Article  Google Scholar 

  • Roche O, Phillips JC, Kelfoun K (2013) Pyroclastic density currents. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press.

  • Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:151–182. https://doi.org/10.1016/0377-0273(93)90106-2

    Article  Google Scholar 

  • Rutarindwa R, Spiller ET, Bevilacqua A, Bursik MI, Patra AK (2019) Dynamic probabilistic hazard mapping in the Long Valley Volcanic Region CA: integrating vent opening maps and statistical surrogates of physical models of pyroclastic density currents J Geophys Res Solid Earth

  • Santacroce R, Sbrana A (2003) Geological map of Vesuvius. SELCA, Firenze

    Google Scholar 

  • Sarocchi D, Sulpizio R, Macías JL, Saucedo R (2011) The 17 July 1999 block-and-ash flow (BAF) at Colima Volcano: new insights on volcanic granular flows from textural analysis. J Volcanol Geotherm Res 204:40–56. https://doi.org/10.1016/j.jvolgeores.2011.04.013

    Article  Google Scholar 

  • Sbrana A, Cioni R, Marianelli P, Sulpizio R, Andronico D, Pasquini G (2020) Volcanic evolution of the Somma-Vesuvius Complex (Italy). J Maps:1–11. https://doi.org/10.1080/17445647.2019.1706653

  • Scarpati C, Sparice D, Perrotta A (2014) A crystal concentration method for calculating ignimbrite volume from distal ash-fall deposits and a reappraisal of the magnitude of the Campanian Ignimbrite. J Volcanol Geotherm Res 280:67–75. https://doi.org/10.1016/j.jvolgeores.2014.05.009

    Article  Google Scholar 

  • Selva J, Marzocchi W, Papale P, Sandri L (2012) Operational eruption forecasting at high-risk volcanoes: the case of Campi Flegrei, Naples. J Appl Volcanol 1:5

    Article  Google Scholar 

  • Spiller ET, Bayarri MJ, Berger JO, Calder ES, Patra AK, Pitman EB, Wolpert RL (2014) Automating emulator construction for geophysical hazard maps SIAM/ASA. J Uncertain Quantif 2:126–152. https://doi.org/10.1137/120899285

    Article  Google Scholar 

  • Sulpizio R, Dellino P (2008) Sedimentology, depositional mechanisms and pulsating behaviour of pyroclastic density currents. Dev Volc 10:57–96

    Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius. Italy Bull Volcanol 67:743–767. https://doi.org/10.1007/s00445-005-0414-x

    Article  Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2007) Deposits and physical properties of pyroclastic density currents during complex subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sedimentology 54:607–635. https://doi.org/10.1111/j.1365-3091.2006.00852.x

    Article  Google Scholar 

  • Tadini A, Bevilacqua A, Neri A, Cioni R, Aspinall WP, Bisson M, Isaia R, Mazzarini F, Valentine GAV, Vitale S, Baxter PJ, Bertagnini A, Cerminara M, de’ Michieli Vitturi M, Di Roberto A, Engwell SL, Esposti Ongaro T, Flandoli F, Pistolesi M (2017a) Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 2. Probability maps of the caldera for a future plinian/sub-plinian event with uncertainty quantification. J Geophys Res Solid Earth 122:4357–4376. https://doi.org/10.1002/2016JB013860

    Article  Google Scholar 

  • Tadini A, Bisson M, Neri A, Cioni R, Bevilacqua A, Aspinall WP (2017b) Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 1. A new information geo-database with uncertainty characterizations. J Geophys Res Solid Earth 122:4336–4356. https://doi.org/10.1002/2016JB013858

    Article  Google Scholar 

  • Tierz P, Sandri L, Costa A, Zaccarelli L, Di Vito MA, Sulpizio R, Marzocchi W (2016) Suitability of energy cone for probabilistic volcanic hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei (Italy). Bull Volcanol 78:79. https://doi.org/10.1007/s00445-016-1073-9

    Article  Google Scholar 

  • Tierz P, Stefanescu ER, Sandri L, Sulpizio R, Valentine GA, Marzocchi W, Patra AK (2018) Towards quantitative volcanic risk of pyroclastic density currents: probabilistic hazard curves and maps around Somma-Vesuvius (Italy). J Geophys Res Solid Earth 123:6299–6317

    Google Scholar 

  • Valentine GA (2020) Initiation of dilute and concentrated pyroclastic currents from collapsing mixtures and origin of their proximal deposits. Bull Volcanol 82:20. https://doi.org/10.1007/s00445-020-1366-x

    Article  Google Scholar 

  • Valentine GA, Palladino DM, DiemKaye K, Fletcher C (2019) Lithic-rich and lithic-poor ignimbrites and their basal deposits: Sovana and Sorano formations (Latera caldera, Italy). Bull Volcanol 81:29. https://doi.org/10.1007/s00445-019-1288-7

    Article  Google Scholar 

  • Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites Journal für die reine und angewandte Mathematik 133:97–178

  • Walker GPL (1980) The Taupo pumice: product of the most powerful known (Ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94. https://doi.org/10.1016/0377-0273(80)90008-6

    Article  Google Scholar 

  • Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88. https://doi.org/10.1016/0377-0273(83)90062-8

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF, Brown WK (1989) Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res-Sol Earth 94:15703–15721

    Article  Google Scholar 

Download references

Acknowledgments

Marina Bisson is acknowledged for several useful discussions during the development of the manuscript, which greatly improved its quality. This paper was greatly improved by the detailed and insightful comments of Greg Valentine and Paul Cole. We also thank the editorial handling of Richard J. Brown.

Availability of data and material

The Online Resources presented in this study could be found also in a repository in the Figshare community with the following DOI: https://doi.org/10.6084/m9.figshare.12506027.

Funding

This work has been partially supported by the project V1 “Stima della pericolosità vulcanica in termini probabilistici” funded by Dipartimento della Protezione Civile (Italy). The manuscript does not necessarily represent official views and policies of the Dipartimento della Protezione Civile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tadini.

Additional information

Editorial responsibility: R.J. Brown; Deputy Executive Editor: J. Tadeucci

Electronic supplementary material

ESM 1

(XLSX 73 kb)

ESM 2

(PDF 427 kb)

ESM 3

(PDF 1008 kb)

ESM 4

(PDF 848 kb)

ESM 5

(PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cioni, R., Tadini, A., Gurioli, L. et al. Estimating eruptive parameters and related uncertainties for pyroclastic density currents deposits: worked examples from Somma-Vesuvius (Italy). Bull Volcanol 82, 65 (2020). https://doi.org/10.1007/s00445-020-01402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01402-7

Keywords

Navigation