Skip to main content

Advertisement

Log in

The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented “violent Strombolian” eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguirre-Díaz GJ, Jaimes-Viera MC, Nieto-Obregón J (2006) The Valle de Bravo Volcanic Field: geology and geomorphometric parameters of a Quaternary monogenetic field at the front of the Mexican Volcanic Belt. Geol Soc Am Spec Pap 402:139–154

    Google Scholar 

  • Agustín-Flores J, Siebe C, Guilbaud M-N (2011) Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin volcanic field, south of México City. J Volcanol Geoth Res 201:143–162

    Article  Google Scholar 

  • Albert H, Costa F, Martí J (2016) Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions. Geology 44:211–214

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Del Carlo P, Taddeucci J (2009) Shifting styles of basaltic explosive activity during the 2002–03 eruption of Mt. Etna, Italy. J Volcanol Geoth Res 180:110–122

    Article  Google Scholar 

  • Antos JA, Zobel DB (1985) Recovery of forest understories buried by tephra from Mount St. Helens. Vegetatio 64:103–111

    Article  Google Scholar 

  • Arana-Salinas L (1998) Geología del volcán Pelado. Undergraduate dissertation, Universidad Nacional Autónoma de México

  • Arce JL, Layer PW, Lassiter JC, Benowitz JA, Macías JL, Ramírez-Espinosa J (2013) 40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism. Bull Volcanol 75:774

    Article  Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150

    Article  Google Scholar 

  • Baines PG (1995) Topographic effects in stratified flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Blong R (1984) Volcanic hazards: a sourcebook on the effects of eruptions. Academic Press, Sydney

    Google Scholar 

  • Bloomfield K (1975) A late-Quaternary monogenetic volcano field in central Mexico. Geol Rundsch 64:476–497

    Article  Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonne K, Kervyn M, Cascone L, Njome S, Van Ranst E, Suh E, Ayonghe S, Jacobs P, Ernst G (2008) A new approach to assess long-term lava flow hazard and risk using GIS and low-cost remote sensing: the case of Mount Cameroon, West Africa. Int J Remote Sens 29:6539–6564

    Article  Google Scholar 

  • Bruce PM, Huppert HE (1989) Thermal control of basaltic fissure eruptions. Nature 342:665–667

    Article  Google Scholar 

  • Bullard FM (1947) Studies on Parícutin volcano, Michoacan, Mexico. Geol Soc Am Bull 58:433–450

    Article  Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic successions, modern and ancient. Chapman & Hall, London

    Google Scholar 

  • Chester DK, Degg M, Duncan AM, Guest JE (2001) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Environ Hazards 2:89–103

    Google Scholar 

  • Chevrel MO, Siebe C, Guilbaud M-N, Salinas S (2016a) The AD 1250 El Metate shield volcano (Michoacán): Mexico’s most voluminous Holocene eruption and its significance for archeology and hazards. The Holocene 26:471–488

    Article  Google Scholar 

  • Chevrel MO, Guilbaud M-N, Siebe C (2016b) The ~AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78:32

    Article  Google Scholar 

  • Cimarelli C, Di Traglia F, Taddeucci J (2010) Basaltic scoria textures from a zoned conduit as precursors to violent Strombolian activity. Geology 38:439–442

    Article  Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343

    Google Scholar 

  • Connor CB, Hill BE, Winfrey B, Franklin NM, La Femina PC (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards 2:33–42

    Article  Google Scholar 

  • Cronin SJ, Hedley MJ, Neall VE (1997) Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand. Environ Geol 34:21–30

    Article  Google Scholar 

  • D’Oriano C, Bertagnini A, Pompilio M (2011) Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73:471–477

    Article  Google Scholar 

  • Dale VH, Delgado-Acevedo J, MacMahon J (2005) Effects of modern volcanic eruptions on vegetation. In: Marti J, Ernst GGJ (eds) Volcanoes and the environment. Cambridge University Press, Cambridge, pp 227–249

    Chapter  Google Scholar 

  • Delgado-Granados H (1992) Geology of the Chapala Rift, Mexico. PhD dissertation, Tohoku University

  • de Foy B, Caetano E, Magaña V, Zitácuaro A, Cárdenas B, Retama A, Ramos R, Molina LT, Molina MJ (2005) Mexico City basin wind circulation during the MCMA-2003 field campaign. Atmos Chem Phys 5:2267–2288

    Article  Google Scholar 

  • de Silva S, Lindsay JM (2015) Primary volcanic landforms. In: Sigurdsson H (ed) Encyclopedia of volcanoes second edition. Academic Press, San Diego, pp 273–298

    Chapter  Google Scholar 

  • Felpeto A, Araña V, Ortiz R, Astiz M, García A (2001) Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazards 23:247–257

    Article  Google Scholar 

  • Foshag WF, González-Reyna J (1956) Birth and development of Parícutin volcano, Mexico. US Geol Surv Bull 965-D. US Government Printing Office, Washington, D.C.

  • Francis PW, Oppenheimer C (2004) Volcanoes. Oxford University Press, Oxford

    Google Scholar 

  • Fries C (1953) Volumes and weights of pyroclastic material, lava and water erupted by Paricutin volcano, Michoacan, Mexico. Trans Am Geophys Union 34:603–616

    Article  Google Scholar 

  • Greeley R (1982) The Snake River Plain, Idaho: representative of a new category of volcanism. J Geophys Res 87:2705–2712

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Agustín-Flores J (2009) Eruptive style of the young high-Mg basaltic andesite Pelagatos scoria cone, southeast of México City. Bull Volcanol 71:859–880

    Article  Google Scholar 

  • Guilbaud M-N, Arana-Salinas L, Siebe C, Barba-Pingarrón LA, Ortiz A (2015) Volcanic stratigraphy of a high-altitude Mammuthus columbi (Tlacotenco, Sierra Chichinautzin), Central México. Bull Volcanol 77:17

    Article  Google Scholar 

  • Gutmann JT (1979) Structure and eruptive cycle of cinder cones in the Pinacate volcanic field and the controls of Strombolian activity. J Geol 87:448–454

    Article  Google Scholar 

  • Hasenaka T (1994) Size, distribution, and magma output rate for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. J Volcanol Geoth Res 63:13–31

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1985) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geoth Res 25:105–124

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, central Mexico: petrology and chemistry. J Petrol 28:241–269

    Article  Google Scholar 

  • Hayes J, Wilson TM, Deligne NI, Cole J (2017) A model to assess tephra clean-up requirements in urban environments. J Appl Volcanol 6:23

    Article  Google Scholar 

  • Heiken G (1978) Characteristics of tephra from cinder cone, Lassen volcanic national park, California. Bull Volcanol 41:119–130

    Article  Google Scholar 

  • Hill BE, Connor CE, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110:1231–1241

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW, Del Carlo P (2006) Proximal tephra hazards: recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand. J Volcanol Geoth Res 155:138–149

    Article  Google Scholar 

  • Instituto Nacional de Estadística, Geografía e Informática [INEGI] (2010) Censo de población y vivienda 2010. Instituto Nacional de Estadística, Geografía e Informática, México

  • James AV (1920) Factors producing columnar structure in lavas and its occurrence near Melbourne, Australia. J Geol 28:458–469

    Article  Google Scholar 

  • Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. GSA Bull 112:720–726

    Article  Google Scholar 

  • Krauskopf KB (1948) Lava movement at Parícutin volcano, Mexico. Geol Soc Am Bull 59:1267–1284

    Article  Google Scholar 

  • Kshirsagar P, Siebe C, Guilbaud M-N, Salinas S, Layer PW (2015) Late Pleistocene Alberca de Guadalupe maar volcano (Zacapu basin, Michoacán): stratigraphy, tectonic setting, and paleo-hydrogeological environment. J Volcanol Geoth Res 304:214–236

    Article  Google Scholar 

  • Le Corvec N, Spörli KB, Rowland J, Lindsay J (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth-Sci Rev 124:96–114

    Article  Google Scholar 

  • Lorenzo-Merino A (2016) Historia eruptiva del volcán Pelado (Sierra Chichinautzin, México). Master’s dissertation, Universidad Nacional Autónoma de México

  • Lugo-Hubp J (1984) Geomorfología del Sur de la Cuenca de México (Serie Varia 1). Instituto de Geografía UNAM, Ciudad de México

  • Luhr JF, Simkin T (1993) Parícutin: the volcano born in a Mexican cornfield. Geoscience Press, Phoenix

    Google Scholar 

  • MacDonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Magill C, Wilson TM, Okada T (2013) Observations of tephra fall impacts from the 2011 Shinmoedake eruption, Japan. Earth Planets Space 65:677–698

    Article  Google Scholar 

  • Márquez A, Verma SP, Anguita F, Oyarzun R, Brandle JL (1999) Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic belt. J Volcanol Geoth Res 93:125–150

    Article  Google Scholar 

  • Martin del Pozzo AL (1982) Monogenetic volcanism in Sierra Chichinautzin, Mexico. Bull Volcanol 45:1–24

    Article  Google Scholar 

  • McGee LE, Smith IE (2016) Interpreting chemical compositions of small scale basaltic systems: a review. J Volcanol Geoth Res 325:45–60

    Article  Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. Geol Soc Am SP 470:43–66

    Google Scholar 

  • Nemeth K, White JD, Reay A, Martin U (2003) Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soc Lond 160:523–530

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 5:1–15

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 263–269

    Google Scholar 

  • Rasoazanamparany C, Widom E, Siebe C, Guilbaud M-N, Spicuzza MJ, Valley JW, Valdez G, Salinas S (2016) Temporal and compositional evolution of Jorullo volcano, Mexico: implications for magmatic processes associated with a monogenetic eruption. Chem Geol 434:62–80

    Article  Google Scholar 

  • Rees JD (1979) Effects of the eruption of Parícutin volcano on landforms, vegetation, and human occupancy. In: Sheets PD, Grayson DK (eds) Volcanic activity and human ecology. Academic Press, New York, pp 249–292

    Chapter  Google Scholar 

  • Righter K, Carmichael ISE (1992) Hawaiites and related lavas in the Atenguillo graben, western Mexican Volcanic Belt. Geol Soc Am Bull 104:1592–1607

    Article  Google Scholar 

  • Roberge J, Guilbaud M-N, Mercer CM, Reyes-Luna PC (2015) Insight into monogenetic eruption processes at Pelagatos volcano, Sierra Chichinautzin, Mexico: a combined melt inclusion and physical volcanology study. Geol Soc SP 410:179–198

    Article  Google Scholar 

  • Rodríguez SR, Morales-Barrera W, Layer P, González-Mercado E (2010) A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: geology, distribution and morphology of the volcanic vents. J Volcanol Geoth Res 197:149–166

    Article  Google Scholar 

  • Rossi MJ (1996) Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland. Bull Volcanol 57:530–540

    Article  Google Scholar 

  • Rowland SK, Jurado-Chichay Z, Ernst G, Walker GPL (2009) Pyroclastic deposits and lava flows from the 1759–1774 eruption of El Jorullo, México: aspects of “violent Strombolian” activity and comparison with Parícutin. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker, IAVCEI SP 2. Geological Society of London, London, pp 105–128

    Google Scholar 

  • Ruth DCS, Calder ES (2013) Plate tephra: preserved bubble walls from large slug bursts during violent Strombolian eruptions. Geology 42:11–14

    Article  Google Scholar 

  • Scaini C, Biass S, Galderisi A, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part II: vulnerability and impact. Nat Hazard Earth Sys 14:2289–2312

    Article  Google Scholar 

  • Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46:1243–1282

    Article  Google Scholar 

  • Segerstrom K (1950) Erosion studies at Parícutin, state of Michoacán, Mexico. US Geol Surv Bull 965-A. US Government Printing Office, Washington

  • Shane P, Smith I (2000) Geochemical fingerprinting of basaltic tephra deposits in the Auckland Volcanic Field. New Zeal J Geol Geop 43:569–577

    Article  Google Scholar 

  • Siebe C, Schaaf P, Urrutia-Fucugauchi J (1999) Mammoth bones embedded in a late Pleistocene lahar from Popocatépetl volcano, near Tocuila, central México. Geol Soc Am Bull 111:1550–1562

    Article  Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004a) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. Bull Volcanol 66:203–225

    Article  Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004b) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geoth Res 130:197–226

    Article  Google Scholar 

  • Siebe C, Arana-Salinas L, Abrams M (2005) Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chichinautzin, México. J Volcanol Geoth Res 141:225–243

    Article  Google Scholar 

  • Smathers GA, Mueller-Dombois D (1974) Invasion and recovery of vegetation after a volcanic eruption in Hawaii. National Park Service scientific monograph series, no. 5. National Park Service, Washington, D.C.

  • Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527

    Article  Google Scholar 

  • Sosa-Ceballos G, Gardner JE, Siebe C, Macías JL (2012) A caldera forming eruption ~14100 14C yr BP at Popocatépetl volcano, México: insights from eruption dynamics and magma mixing. J Volcanol Geoth Res 213-214:27–40

    Article  Google Scholar 

  • Sparks RSJ, Aspinall WP, Crosweller HS, Hincks TK (2013) Risk and uncertainty assessment of volcanic hazards. In: Rougier J, Sparks RSJ, Hill LJ (eds) Risk and uncertainty assessment for natural hazards. Cambridge University Press, Cambridge, pp 364–397

    Chapter  Google Scholar 

  • Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophy Geosy 9:Q03007

    Article  Google Scholar 

  • Straub SM, Gómez-Tuena A, Zellmer GF, Espinasa-Pereña R, Stuart FM, Cai Y, Langmuir CH, Martin-del Pozzo AL, Mesko GT (2013) The processes of melt differentiation in arc volcanic rocks: insights from OIB-type arc magmas in the central Mexican Volcanic Belt. J Petrol 54:665–701

    Article  Google Scholar 

  • Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31:143–146

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordretch

    Book  Google Scholar 

  • Sumner JM (1998) Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bull Volcanol 60:195–212

    Article  Google Scholar 

  • Taddeucci J, Pompilio M, Scarlato P (2004) Conduit processes during the July–August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles. J Volcanol Geoth Res 137:33–54

    Article  Google Scholar 

  • Taddeucci J, Scarlato P, Montanaro C, Cimarelli C, Del Bello E, Freda C, Andronico D, Gudmundsson MT, Dingwell DB (2011) Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging. Geology 39:891–894

    Article  Google Scholar 

  • Thornton IWB (2000) The ecology of volcanoes: recovery and reassembly of living communities. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 1057–1082

    Google Scholar 

  • Trusdell FA (1995) Lava flow hazards and risk assessment on Mauna Loa volcano, Hawai’i. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history, and hazards. Geophys Monogr 92. American Geophysical Union, Washington, DC, pp 327–336

  • Valentine GA, Connor CB (2015) Basaltic volcanic fields. In: Sigurdsson H (ed) The encyclopedia of volcanoes, second edn. Elsevier, Amsterdam, pp 423–439

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geoth Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. GSA Bull 118:1313–1330

    Article  Google Scholar 

  • Vesperman D, Schmincke HU (2000) Scoria cones and tuff rings. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694

    Google Scholar 

  • Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Int J Earth Sci 62:431–446

    Google Scholar 

  • Watt SFL, Gilbert JS, Folch A, Phillips JC, Cai XM (2015) An example of enhanced tephra distribution driven by topographically induced atmospheric turbulence. Bull Volcanol 77:35

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • Whitford-Stark JL (1975) Shield volcanoes. In: Fielder G, Wilson L (eds) Volcanoes of the earth, moon, and Mars. St. Martin’s Press, New York, pp 66–74

    Google Scholar 

  • Williams H, McBirney AR (1979) Volcanology. Freeman and Cooper, San Francisco

    Google Scholar 

  • Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geoth Res 286:148–182

    Article  Google Scholar 

  • Wilson TM, Jenkins S, Stewart C (2015) Impacts from volcanic ash fall. In: Papale P (ed) Volcanic hazards, risks, and disasters. Elsevier, Amsterdam, pp 47–86

    Chapter  Google Scholar 

  • Wood CA (1980) Morphometric evolution of cinder cones. Volcanol Geoth Res 7:387–413

    Article  Google Scholar 

  • Yokoyama I, De la Cruz-Reyna S (1990) Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico. J Volcanol Geoth Res 44:265–281

    Article  Google Scholar 

  • Zimmer BW, Riggs NR, Carrasco-Núñez G (2010) Evolution of tuff ring-dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt. Bull Volcanol 72:1223–1240

    Article  Google Scholar 

Download references

Acknowledgments

Institutional and logistic support was provided by the Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM). Analytical costs were supported by the Dirección General de Asuntos del Personal Académico UNAM-DGAPA projects PAPIIT IN105615 and IN113517 assigned to Marie-Noëlle Guilbaud. The present work was carried out with the aid of a Masters Graduate Fellowship from Consejo Nacional de Ciencia y Tecnología (CONACyT) to Ainhoa Lorenzo-Merino (2014–2016). The authors wish to thank Gustavo Vivó Vázquez for his invaluable help both in the field and with the ArcGIS software, Armando Vázquez Camargo and Nestor López Valdez for fieldwork support, Lilia Arana for analytical assistance at the Laboratorio de Sedimentología Volcánica of the Instituto de Geofísica UNAM, and Carlos Linares for technical assistance in the acquisition of backscattered electron images at the Laboratorio Universitario de Petrología LUP-UNAM. Two anonymous reviewers, Costanza Bonadonna (associate editor), James White, and Andrew Harris (executive editors) provided insightful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lorenzo-Merino.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

Online Resource 1

Site location coordinates and stratigraphic columns of tephra deposits (PDF 600 kb)

Online Resource 2

Granulometry, componentry and vesicularity data (PDF 314 kb)

Online Resource 3

Thinning method fit for the tephra deposits (PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo-Merino, A., Guilbaud, MN. & Roberge, J. The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico. Bull Volcanol 80, 27 (2018). https://doi.org/10.1007/s00445-018-1208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1208-2

Keywords

Navigation