Skip to main content
Log in

Smectites and zeolites in ash from the 2010 summit eruption of Eyjafjallajökull volcano, Iceland

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Hydrothermal alteration minerals are often incorporated in volcanic ash from phreatic and phreatomagmatic activity. Here we assess the presence and abundance of such minerals in the ash materials produced during the April-May 2010 initial phreatomagmatic (phase I) and subsequent magmatic (phases II and III) eruptions of Eyjafjallajökull volcano, Iceland. The results of X-ray diffraction analyses reveal significant quantities of smectites (up to 4 wt%, mainly as saponite) and zeolites (up to 7 wt%) in ash from phase I. While a minor amount of smectites (<0.5 wt%) is present in ash from the subsequent weak explosive activity (phase II), both smectites and zeolites are absent in phase III ash. This material was generated following abrupt rejuvenation of explosive activity in the absence of magma-ice/water interaction. Smectites and zeolites in phase I ash result primarily from scouring of altered volcanic rocks in the subsurface, although some may derive also from water-rock interaction within the summit ice cauldrons through which fragmented magma was injected. We show that incorporation of smectites and zeolites in phase I ash can explain its anomalously high specific surface area. Further, the presence of these minerals in ash may enhance its ability to act as ice nuclei as well as favour particle aggregation processes in the volcanic plume/cloud. Finally, the Eyjafjallajökull eruption represents another case in which ash fallout acted as an exogenic source of 2:1-type clay minerals in volcanic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnalds O (2004) Volcanic soils of Iceland. Catena 56:3–20

    Article  Google Scholar 

  • Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian KJ, Carslaw KS, Dobbie S, O’Sullivan D, Malkin TL (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498:355–358

    Article  Google Scholar 

  • Baris I, Grandjean P (2006) Prospective study of mesothelioma mortality in Turkish villages with exposure to fibrous zeolite Y. J Natl Cancer I 98:414–417

    Article  Google Scholar 

  • Bingemer H, Klein H, Ebert M, Haunold W, Bundke U, Herrmann T, Kandler K, Müller-Ebert D, Weinbruch S, Judt A, Ardon-Dryer K, Levin Z, Curtius J (2011) Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos Chem Phys Discuss 11:2733–2748

    Article  Google Scholar 

  • Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940

    Google Scholar 

  • Björnsson H (2003) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Chang 35:255–271

    Article  Google Scholar 

  • Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res 116, B12202. doi:10.1029/2011JB008462

    Article  Google Scholar 

  • Brantley SL, Mellott NP (2000) Surface area and porosity of primary silicate minerals. Am Mineral 85:1767–1783

    Article  Google Scholar 

  • Brown RJ, Bonadonna C, Durant AJ (2012) A review of volcanic ash aggregation. Phys Chem Earth 45:65–78

    Article  Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6:229–250

    Article  Google Scholar 

  • Cadiboche YM, Feller C, Larqué P, Sobesk O (1987) Sur un double mécanisme d’acidification des sols sous l’influence de cendres volcaniques récentes. Le cas de la Soufrière de Guadeloupe après les éruptions de 1976–1977. CR Acad Sci Paris 15:935–938

    Google Scholar 

  • Chipera SJ, Apps JA (2001) Geochemical stability of natural zeolites. Rev Mineral Geochem 45:117–161

    Article  Google Scholar 

  • Cioni R, Pistolesi M, Bertagnini A, Bonadonna C, Hoskuldsson A, Scateni B (2014) Insights into the dynamics and evolution of the 2010 Eyjafjallajökull summit eruption (Iceland) provided by volcanic ash textures. Earth Planet Sci Lett 394:111–123

    Article  Google Scholar 

  • Cousins CR, Crawford IA, Carrivick JL, Gunn M, Harris J, Kee TP, Karlsson M, Carmody L, Cockell C, Herschy B, Joy KH (2013) Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. J Volcanol Geotherm Res 256:61–77

    Article  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82:113–182

    Article  Google Scholar 

  • Dellino P, Gudmundsson MT, Larsen G, Mele D, Stevenson JA, Thordarson T, Zimanowski B (2012) Ash from the Eyjafjallajökull eruption (Iceland): fragmentation processes and aerodynamic behavior. J Geophys Res 117:B00C04. doi:10.1029/2011JB008726

    Article  Google Scholar 

  • Delmelle P, Villiéras F, Pelletier M (2005) Surface area, porosity and water adsorption properties of fine volcanic ash particles. Bull Volcanol 67:160–169

    Article  Google Scholar 

  • Favier V, Coudrain A, Cadier E, Francou B, Ayabaca E, Maisincho L, Praderio E, Villacis M, Wagnon P (2008) Evidence of groundwater flow on Antisana ice-covered volcano, Ecuador. Hydrol Sci J 53:278–291

    Article  Google Scholar 

  • Fejdi P, Holocsy A (2001) Relationship between crystal morphology and preferred orientation in polycrystalline specimens for diffraction experiments. Mater Struct 8:22–24

    Google Scholar 

  • Garchar L, Wendlandt R, Martini B, Owens L (2012) Geochemistry of a sub-glacial volcanic hydrothermal system at Mount Spurr, Alaska. Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, SGP-TR-194

  • Gislason SR, Hassenkam T, Nedel S, Bovet N, Eiriksdottir ES, Alfredsson HA, Hem CP, Balogh ZI, Dideriksen K, Oskarsson N, Sigfusson B, Larsen G, Stipp SLS (2011) Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment. Proc Natl Acad Sci 108:7307–7312

    Article  Google Scholar 

  • Gudmundsson MT, Thordarson T, Hoskuldsson A, Larsen G, Bjornsson H, Prata FJ, Oddsson B, Magnusson E, Hognadottir T, Petersen GN, Hayward CL, Stevenson JA, Jonsdottir I (2012) Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Nat Sci Rep 2:572–594

    Google Scholar 

  • Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24

    Article  Google Scholar 

  • Horwell CJ, Baxter PJ, Hillman SE, Calkins JA, Damby DE, Delmelle P, Donaldson K, Dunster C, Fubini B, Kelly FJ, Le Blond JS, Livi KJT, Murphy F, Nattrass C, Sweeney S, Tetley TD, Thordarson T, Tomatis M (2013) Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland, using a rapid respiratory hazard assessment protocol. Environ Res J 127:63–73

    Article  Google Scholar 

  • International Agency for Research on Cancer (2012) IARC monographs on the evaluation of carcinogenic risks to humans: arsenic, metals, fibres and dusts. Volume 100C. A review of humans carcinogens. http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-1.pdf. Accessed 4 Jan 2016

  • International Centre for Diffraction Data (2013) Be confident with pdf2. http://www.icdd.com/products/technicalbulletins/PDF-2_Technical_%20Bulletin.pdf. Accessed 5 Aug 2015

  • Jongmans AG, Van Oort F, Nieuwenhuyse A, Buurman P, Jaunet AM, Van Doesburg JDJ (1994) Inheritance of 2:1 phyllosilicates in Costa Rican andisols. SSSAJ 58:494–501

    Article  Google Scholar 

  • Kanno I, Honjo Y, Kuwano Y (1961) Clay minerals of volcanic ash erupted from the Shinmoe-dake of the Kirishima volcanic cluster on February 17, 1959. Appl Clay Sci 3:214–224 (in Japanese)

    Google Scholar 

  • Kodama H (2012) Phyllosilicates. In: Huang PM, Li Y, Summer ME (eds) Handbook of soil science, properties and processes. CRC, New York, pp 1–72

    Google Scholar 

  • Kondo Y, Kondo R, Katsui Y (1978) Clay minerals of the volcanic ash erupted from the volcano Usu in August, 1977. J Sci Soil Manure 49:167–169 (in Japanese)

    Google Scholar 

  • Kristjansson L, Johannesson H, Eiriksson J, Gudmudsson AI (1988) Brunhes-Matuyama paleomagnetism in three lava sections in Iceland. Can J Earth Sci 25:215–225

    Article  Google Scholar 

  • Lamanna JM, Ugolini FC (1987) Trioctahedral vermiculite in a 1980 pyroclastic flow, Mt. St. Helens, Washington. J Soil Sci 143:162–167

    Article  Google Scholar 

  • Loughlin SC (1995) The evolution of the Eyjafjoll volcanic system, southern Iceland. Durham University. Available at Durham E-Theses Online, Durhamntheses, http://etheses.dur.ac.uk/1456/. Accessed 1 Oct 2015

    Google Scholar 

  • Loughlin SC (2002) Facies analysis of proximal subglacial and proglacial volcaniclastic successions at the Eyjafjallajökull central volcano, southern Iceland. Geol Soc Spec Publ 202:149–178

    Article  Google Scholar 

  • Magnússon E, Gudmundsson MT, Roberts MJ, Sigurðsson G, Höskuldsson F, Oddsson B (2012) Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar. J Geophys Res 117, B07405. doi:10.1029/2012JB009250

    Article  Google Scholar 

  • Mertens G, Snellings R, Van Balen K, Bicer-Simsir B, Verlooy P, Elsen J (2009) Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem Concr Res 39:233–240

    Article  Google Scholar 

  • Meunier A (2005) Clays. Springer, Berlin

    Google Scholar 

  • Mizota C, Faure K (1998) Hydrothermal origin of smectite in volcanic ash. Clay Clay Miner 46:178–182

    Article  Google Scholar 

  • Navrátil T, Hladil J, Strnad L, Koptíková L, Skála R (2013) Volcanic ash particulate matter from the 2010 Eyjafjallajökull eruption in dust deposition at Prague, central Europe. Aeolian Res 9:191–202

    Article  Google Scholar 

  • Nogami K, Hirabayashi JI, Ohba T, Yoshiike Y (2000) The 1997 phreatic eruption of Akita-Yakeyama volcano, northeast Japan: insight into the hydrothermal processes. Earth Planets Space 52:229–236

    Article  Google Scholar 

  • Ohba T, Kitade Y (2005) Subvolcanic hydrothermal systems: implications from hydrothermal minerals in hydrovolcanic ash. J Volcanol Geotherm Res 145:249–262

    Article  Google Scholar 

  • Ohba T, Nakagawa M (2002) Minerals in volcanic ash 2: non-magmatic minerals. Glob Environ Res 6:53–59

    Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, 993 p

    Book  Google Scholar 

  • Pevear DR, Dethier DP, Frank D (1982) Clay minerals in the 1980 deposits from Mount St. Helens. Clay Clay Miner 30:241–252

    Article  Google Scholar 

  • Pinti V, Marcolli C, Zobrist B, Hoyle CR, Peter T (2012) Ice nucleation efficiency of clay minerals in the immersion mode. Atmos Chem Phys 12:5859–5878

    Article  Google Scholar 

  • Pusch R, Yong RN (2006) Microstructure of smectite, clays and engineering performance. Taylor and Francis, London, 328p

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res 108(B10):2504. doi:10.1029/2001JB000818

    Article  Google Scholar 

  • Rom WN, Casey KR, Parry WT, Mjaatvedt CH, Moatamed F (1983) Health implications of natural fibrous zeolites for the Intermountain West. Environ Res J 30:1–8

    Article  Google Scholar 

  • Rozalén ML, Huertas FJ, Brady PV, Cama J, García-Palma S, Linares J (2008) Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25 °C. Geochim Cosmochim Acta 72:4224–4253

    Article  Google Scholar 

  • Seifert P, Ansmann A, Gross S, Freudenthaler V, Heinold B, Hiebsch A, Mattis I, Schmidt J, Schnell F, Tesche M, Wandinger U, Wiegner M (2011) Ice formation in ash influenced clouds after the eruption of the Eyjafjallajokull volcano in April 2010. J Geophys Res 116:D00U04. doi:10.1029/2011JD015702

    Article  Google Scholar 

  • Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal JL, Moune S, Keiding JK, Larsen G, Höskuldsson G, Thordarson T (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2:271–281

    Article  Google Scholar 

  • Stroncik N, Schmincke HU (2002) Palagonite—a review. Int J Earth Sci (Geol Rundsch) 91:680–697

    Article  Google Scholar 

  • Taddeucci J, Scarlato P, Montanaro C, Cimarelli C, Del Bello E, Freda C, Andronico D, Gudmundsson MT, Dingwell DB (2011) Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging. Geology 39:891–894

    Article  Google Scholar 

  • Taylor JC, Matulis CE (1991) Absorption contrast effects in the quantitative XRD analysis of powders by full multiphase profile refinement. J Appl Crystallogr 24:14–17

    Article  Google Scholar 

  • Tuffen H (2010) How will melting of ice affect volcanic hazards in the twenty-first century? Phil Trans R Soc A 368:2535–2558

    Article  Google Scholar 

  • Utada M (2001) Zeolites in hydrothermally altered rocks. Rev Mineral Geochem 45:305–322

    Article  Google Scholar 

  • Wagner R, Kiselev A, Möhler O, Saathoff H, Steinke I (2015) Pre-activation of ice nucleating particles by the pore condensation and freezing mechanism. Atmos Chem Phys Discuss 15:28999–29046

    Article  Google Scholar 

  • Ward CR, French D (2006) Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel 85:2268–2277

    Article  Google Scholar 

  • Warner NH, Farmer JD (2010) Subglacial hydrothermal alteration minerals in jökulhlaup deposits of southern Iceland, with implications for detecting past or present habitable environments on Mars. Astrobiology 10:523–547

    Article  Google Scholar 

  • Winburn RS, Grier DG, McCarthy GJ, Peterson RB (2000) Rietveld quantitative X-ray diffraction analysis of NIST fly ash standard reference materials. Powder Diffract 15:163–172

    Article  Google Scholar 

  • World Health Organization (2005) Bentonite, kaolin and selected clay minerals. Environmental Health Criteria 231, 175p. https://www.who.int/ipcs/publications/ehc/ehc_231.pdf. Accessed 4 Jan 2016

Download references

Acknowledgments

This study was originally funded through an urgency research grant from the UK Natural Environment Research Council (NERC NE/1007636/1). MP and MD are supported by a Belgium FNRS-FRIA (2015-17, FC 9756) and FNRS-aspirant (2015-17, 1121315F) studentship, respectively. EM benefited from a FNRS-aspirant studentship (2015, FC.88010). PD gratefully acknowledges the financial support from FNRS (MIS-Ulysse 326.F.6001.11). We kindly thank Anne Iserentant and Claudine Givron for laboratory assistance and Philippe Sonnet for insightful discussion. PD is indebted to Peter Baxter and Susanna Jenkins who collected some of the ash samples used in this study. PD also thanks Claire Horwell, Eugenia Ilyinskaya and Barbael Langmann for additional ash specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Delmelle.

Additional information

Editorial responsibility: P. Allard

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paque, M., Detienne, M., Maters, E. et al. Smectites and zeolites in ash from the 2010 summit eruption of Eyjafjallajökull volcano, Iceland. Bull Volcanol 78, 61 (2016). https://doi.org/10.1007/s00445-016-1056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1056-x

Keywords

Navigation