Skip to main content

Advertisement

Log in

Experimental constraints on the origin of pahoehoe “cicirara” lavas at Mt. Etna Volcano (Sicily, Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We present results from phase equilibria experiments conducted on the most primitive pahoehoe “cicirara” trachybasaltic lava flow ever erupted at Mt. Etna Volcano. This lava is characterized by a pahoehoe morphology in spite of its high content of phenocrysts and microphenocrysts (>40 vol%) with the occurrence of centimetre-sized plagioclases (locally named cicirara for their chick-pea-like appearance). Our experiments have been performed at 400 MPa, 1100–1150 °C and using H2O and CO2 concentrations corresponding to the water-undersaturated crystallization conditions of Etnean magmas. Results show that olivine does not crystallize from the melt, whereas titanomagnetite is the liquidus phase followed by clinopyroxene or plagioclase as a function of melt–water concentration. This mineralogical feature contrasts with the petrography of pahoehoe cicirara lavas suggesting early crystallization of olivine and late formation of titanomagnetite after plagioclase and/or in close association with clinopyroxene. The lack of olivine produces MgO-rich melt compositions that do not correspond to the evolutionary behaviour of cicirara magmas. Moreover, in a restricted thermal path of 50 °C and over the effect of decreasing water concentrations, we observe abundant plagioclase and clinopyroxene crystallization leading to trace element enrichments unlikely for natural products. At the same time, the equilibrium compositions of our mineral phases are rather different from those of natural cicirara phenocrysts and microphenocrysts. The comparison between our water-undersaturated data and those from previous degassing experiments conducted on a similar Etnean trachybasaltic composition demonstrates that pahoehoe cicirara lavas originate from crystal-poor, volatile-rich magmas undergoing abundant degassing and cooling in the uppermost part of the plumbing system and at subaerial conditions where most of the crystallization occurs after the development of pahoehoe surface crusts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aloisi M, Bonaccorso A, Gambino S (2006) Imaging composite dike propagation (Etna, 2002 case). J Geophys Res Solid Earth 111:B06404. doi:10.1029/2005JB003908

    Google Scholar 

  • Applegarth LJ, Tuffen H, James MR, Pinkerton H, Cashman KV (2013) Direct observations of degassing-induced crystallization in basalts. Geology 41:243–246

    Article  Google Scholar 

  • Armienti P, Pareschi MT, Pompilio M, Innocenti F (1994a) Effects of magma storage and ascent on the kinetics of crystal growth: the case of the 1991-1993 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414

    Article  Google Scholar 

  • Armienti P, Clocchiatti R, D'Orazio M, Innocenti F, Petrini R, Pompilio M, Tonarini S, Villari L (1994b) The long-standing 1991–1993 Mount Etna eruption: petrography and geochemistry of lavas. Acta Vulcanol 4:15–28

    Google Scholar 

  • Armienti P, Tonarini S, D’Orazio M, Innocenti F (2004) Genesis and evolution of Mount Etna alkaline lavas: petrological and Sr-Nd-B isotope constraints. Period Mineral 73:29–52

    Google Scholar 

  • Armienti P, Tonarini S, Innocenti F, D’Orazio M (2007) Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. In: Beccaluva L, Bianchini G, Wilson M (Eds.) Cenozoic Volcanism in the Mediterranean, Geological Society of America Special Papers 418: 265–276

  • Armienti P, Perinelli C, Putirka KD (2013) A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). J Petrol 54:795–813

    Article  Google Scholar 

  • Baker DR (2008) The fidelity of melt inclusions as records of melt composition. Contrib Mineral Petrol 156(3):377–395

    Article  Google Scholar 

  • Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87:1717–1726

    Google Scholar 

  • Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt— implications for the Skaergaard intrusion and Columbia river flood basalts. J Petrol 49:1687–1727

  • Branca S, Coltelli M, Groppelli G, Lentini F (2011) Geological map of Etna volcano, 1:50000 scale. Ital J Geosci 130:265–291

    Google Scholar 

  • Brugger CR, Hammer JE (2010) Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. J Petrol 51:1941–1965

    Article  Google Scholar 

  • Burkhard DJM (2002) Kinetics of crystallization: example of micro-crystallization in basalt lava. Contrib Mineral Petrol 142:724–737

    Article  Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Part II: Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305

    Article  Google Scholar 

  • Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pahoehoe Lava to Aa. Bull Volcanol 61:306–323

    Article  Google Scholar 

  • Chester DK, Duncan AN, Guest JE, Kilburn CRJ (1985) Mount Etna. The anatomy of a volcano. Cambridge University Press, Cambridge, 404 pp

    Google Scholar 

  • Collins SJ, Pyle DM, Maclennan J (2009) Melt inclusions track pre-eruption storage and dehydratation of magmas at Etna. Geology 6:571–574

    Article  Google Scholar 

  • Corsaro RA, Pompilio M (2004) Dynamics of magmas at Mount Etna. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Mt. Etna volcano laboratory, 143: AGU Geophysical Monograph Series, Washington, 91–110

  • Corsaro RA, Miraglia L, Pompilio M (2007) Petrological evidence of a complex plumbing system feeding the July-August 2001 eruption of Mt. Etna, Sicily, Italy. Bull Volcanol 69:401–421

    Article  Google Scholar 

  • Corsaro RA, Metrich N, Allard P, Andronico D, Miraglia L, Fourmentraux C (2009) The 1974 flank eruption of Mount Etna: an archetype for deep dike-fed eruptions at basaltic volcanoes and a milestones in Etna’s recent history. J Geophys Res 114, B07204

    Google Scholar 

  • Corsaro RA, Di Renzo V, Distefano S, Miraglia L, Civetta L (2013) Relationship between petrologic processes in the plumbing system of Mt. Etna and the dynamics of the eastern flank from 1995 to 2005. J Volcanol Geotherm Res 251:75–89

    Article  Google Scholar 

  • Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95:1255–1270. doi:10.1029/89JB01696

    Article  Google Scholar 

  • Crisp J, Cashman CK, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (2001) Framework silicates: feldspars. The Geological Society, London, 972 p

    Google Scholar 

  • Ersoy EY, Helvaci C (2010) FC-AFC-FCA and mixing modeler: a Microsoft® Excel© spreadsheet program for modeling geochemical differentiations of magma by crystal fractionations, crustal assimilation and mixing. Comput Geosci 36:383–390

    Article  Google Scholar 

  • Ferlito C, Coltorti M, Lanzafame G, Giacomoni PP (2014) The volatile flushing triggers eruptions at open conduit volcanoes: evidence from Mount Etna volcano (Italy). Lithos 184–187:447–455

  • Ferlito C, Viccaro M, Cristofolini R (2008) Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption. Bull Volcanol 70:455–473

    Article  Google Scholar 

  • France L, Ildefonse B, Koepke J, Bech F (2010) A new method to estimate the oxidation state of basaltic series from microprobe analyses. J Volcanol Geotherm Res 189:340–346

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquidus-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Giacomoni PP, Ferlito C, Coltorti M, Bonadiman C, Lanzafame G (2014) Plagioclase as archive of magma ascent dynamics on “Open Conduit” volcanoes: the 2001-2006 eruptive period at Mount Etna. Earth Sci Rev 138:371–393

    Article  Google Scholar 

  • Gottsmann J, Harris AJL, Dingwell DB (2004) Thermal histrory of Hawaian pahoehoe lava crusts at the glass transition: implications for flow rheology and emplacement. Earth Planet Sci Lett 228:343–353

    Article  Google Scholar 

  • Guest JE, Duncan AM, Stofan ER, Anderson SW (2012) Effect of slope on the development of pahohehoe flow fields: evidence from Mount Etna. J Volcanol Geotherm Res 219–220:52–62

    Article  Google Scholar 

  • Harris AJL, Rowland SK (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. In: Thordarson T, Self S, Larsen S, et al (eds) Studies in volcanology: the legacy of George Walker. Special Publications of IAVCEI, 2, Geological Society, London, pp 33–51

  • Hon K, Gansecki C, Kauahikaua J (2003) The transition from aa to pahoheoe crust on flows emplaced during the Pu’u O’o- Kupaianaha eruption. US Geol Surv Prof Pap 1676:89–104

    Google Scholar 

  • Hoover SR, Cashman KV, Manga M (2001) The yield strength of subliquidus basalts: experimental results. J Volcanol Geotherm Res 107:1–18

    Article  Google Scholar 

  • Hughes JW, Guest JE, Duncan AM (1990) Changing styles of effusive eruption on Mount Etna since AD 1600. In: Ryan MP (ed) Magma transport and storage. Wiley, London, pp 385–405

    Google Scholar 

  • Iezzi G, Ventura G (2005) The kinematics of lava flows inferred from the structural analysis of enclaves: a review. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geological Society of America, Boulder, pp 15–28

    Chapter  Google Scholar 

  • Iezzi G, Mollo S, Ventura G, Cavallo A, Romano C (2008) Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem Geol 253:91–101

    Article  Google Scholar 

  • Iezzi G, Mollo S, Torresi G, Ventura G, Cavallo A, Scarlato P (2011) Experimental solidification of an andesitic melt by cooling. Chem Geol 283:261–273

    Article  Google Scholar 

  • Iezzi G, Mollo S, Shaini E, Cavallo A, Scarlato P (2014) The cooling kinetics of plagioclase revealed by electron microprobe mapping. Am Mineral 99:898–907

    Article  Google Scholar 

  • Ishibashi H (2013) Spinel-melt oxygen barometry: a method and application to Cenozoic alkali basaltic magmas from the Higashi-Matsuura district, NW Kyushu, Japan. Geosci Rep Shizuoka Univ 40:21–32 (in Japanese with English abstract)

    Google Scholar 

  • Kahl M, Chakraborty S, Costa F, Pompilio M (2013) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308:11–22

    Article  Google Scholar 

  • Kamenetsky VS, Pompilio M, Métrich N, Sobolev AV, Kuzmin DV, Thomas R (2007) Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology 35:255–258

    Article  Google Scholar 

  • Kilburn CRJ (2004) Fracturing as a quantitative indicator of lava flow dynamics. J Volcanol Geotherm Res 132:209–224

    Article  Google Scholar 

  • Kilburn CRJ, Guest JE (1993) Aa lavas of Mount Etna, Sicily. In: Kilburn CRJ (ed) Active lavas. UCL Press, London, pp 73–106

    Google Scholar 

  • Kostov I, Kostov RI (1999) Crystal habits of minerals. Bulgarian Academic Monographs, Sophia

  • Lange RA, Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946

    Article  Google Scholar 

  • Lanzafame G, Mollo S, Iezzi G, Ferlito C, Ventura G (2013) Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull Volcanol 75:1–16

    Article  Google Scholar 

  • Lasaga AC (1997) Kinetic theory in the earth sciences. Princeton University Press, Princeton

    Google Scholar 

  • Metrich N, Rutherford MJ (1998) Low pressure crystallization paths of H2O-saturated basaltic-hawaitic melts from Mt Etna: implications for open-system degassing of basaltic volcanoes. Geochim Cosmochim Acta 62:1195–1205

    Article  Google Scholar 

  • Métrich N, Allard P, Spilliaert N, Andronico D, Burton M (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth Planet Sci Lett 228:1–17

    Article  Google Scholar 

  • Mollo S, Lanzafame G, Masotta M, Iezzi G, Ferlito C, Scarlato P (2011a) Cooling history of a dike as revealed by mineral chemistry: a case study from Mt. Etna volcano. Chem Geol 288:39–52

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Del Gaudio P, Scarlato P (2011b) Plagioclase-melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125:221–235

    Article  Google Scholar 

  • Mollo S, Misiti V, Scarlato P, Soligo M (2012) The role of cooling rate in the origin of high temperature phases at the chilled margin of magmatic intrusions. Chem Geol. doi:10.1016/j.chemgeo.2012.05.029

    Google Scholar 

  • Mollo S, Scarlato P, Lanzafame G, Ferlito C (2013a) Deciphering lava flow post-eruption differentiation processes by means of geochemical and isotopic variations: a case study from Mt. Etna volcano. Lithos 162–163:115–127

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Scarlato P (2013b) The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib Mineral Petrol 165:457–475

    Article  Google Scholar 

  • Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013c) A new test for equilibrium based on clinopyroxene-melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100

    Article  Google Scholar 

  • Mollo S, Giacomoni PP, Coltorti M, Ferlito C, Iezzi G, Scarlato P (2015) Reconstruction of magmatic variables governing recent Etnean eruptions: constraints from mineral chemistry and P-T-fO2-H2O modelling. Lithos 212–215:311–320. doi:10.1016/j.lithos.2014.11.020

    Article  Google Scholar 

  • Moore GM, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from Western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Article  Google Scholar 

  • Pupier E, Duchene S, Toplis MJ (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib Mineral Petrol 155:555–570

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley F (Eds.) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69: 61–120

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene–liquid thermobarometers for maric, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Google Scholar 

  • Sato H (1995) Textural difference between pahoehoe and aa lavas of Izu-Oshima volcano, Japan: an experimental study on population density of plagioclase. J Volcanol Geotherm Res 66:101–113

    Article  Google Scholar 

  • Scarlato P, Mollo S, Blundy JD, Iezzi G, Tiepolo M (2014) The role of natural solidification paths on REE partitioning between clinopyroxene and melt. Bull Volcanol 76:1–4

    Article  Google Scholar 

  • Schiavi F, Walte N, Konschak A, Keppler H (2009) First in situ observation of crystallization processes in a basaltic-andesitic melt with the moissanite cell. Geology 37:963–966

  • Sehlke A, Whittington A, Robert B, Harris A, Gurioli L, Médard E (2014) Pahoehoe to `a`a transition of Hawaiian lavas: an experimental study. Bull Volcanol 76:876

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Soule SA, Cashman KV (2005) Shear rate dependence of the pahoehoe to `a`a transition: analog experiments. Geology 33:361–364

    Article  Google Scholar 

  • Spilliaert N, Allard P, Metrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt feeding the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111, B04203

    Google Scholar 

  • Spulber SD, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25

    Article  Google Scholar 

  • Stormer JC, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4:143–159

    Article  Google Scholar 

  • Tanguy JC, Crocchiati R (1984) The Etnean lavas, 1977-1983: petrology and mineralogy. Bull Volcanol 47:879–894

    Article  Google Scholar 

  • Vetere F, Botcharnikov R, Behrens H, Holtz F, De Rosa R (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressure from 50 to 400 MPa. J Volcanol Geotherm Res 202:251–261

    Article  Google Scholar 

  • Vetere F, Behrens H, Botcharnikov R, Holtz F, Fanara S (2014) The role of alkalis in the solubility of H2O and CO2 in silicate melts. Implication for phonotephritic magmas. Contrib Mineral Petrol 167:1014

    Article  Google Scholar 

  • Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91

  • Wilding M, Webb S, Dingwell DB (1996) Tektite cooling rates: calorimetric relaxation geospeedometry applied to a natural glass. Geochim Cosmochim Acta 60:1099–1103

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tim McClinton and Hiroaki Sato (as Reviewers) and Michael Manga (as Associate Editor) for their useful and constructive suggestions. We kindly thank A. Cavallo for assistance during electron microprobe analysis. The research activities of the HP-HT laboratory of the INGV were supported by the European Observing System Infrastructure Project (EPOS). F. Vetere would like to acknowledge the Marie Curie Fellowship 297880 SolVoM and D. Perugini the European Research Council for the Consolidator Grant ERC-2013-CoG Proposal No. 612776 - CHRONOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mollo.

Additional information

Editorial responsibility: M. Manga

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetere, F., Mollo, S., Giacomoni, P.P. et al. Experimental constraints on the origin of pahoehoe “cicirara” lavas at Mt. Etna Volcano (Sicily, Italy). Bull Volcanol 77, 44 (2015). https://doi.org/10.1007/s00445-015-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0931-1

Keywords

Navigation