Skip to main content
Log in

Anthropogenic sodium influences butterfly responses to nitrogen-enriched resources: implications for the nitrogen limitation hypothesis

  • Behavioral ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Humans are increasing the environmental availability of historically limited nutrients, which may significantly influence organismal performance and behavior. Beneficial or stimulatory responses to increases in nitrogen availability (i.e., nitrogen limitation) are generally observed in plants but less consistently in animals. One possible explanation is that animal responses to nitrogen enrichment depend on how nitrogen intake is balanced with sodium, a micronutrient crucial for animals but not plants. We tested this idea in the cabbage white butterfly (Pieris rapae), a species that frequently inhabits nutrient-enriched plants in agricultural settings and roadside verges. We asked (1) whether anthropogenic increases in sodium influence how nitrogen enrichment affects butterfly performance and (2) whether individuals can adaptively adjust their foraging behavior to such effects. Larval nitrogen enrichment enhanced growth of cabbage white larvae under conditions of low but not high sodium availability. In contrast, larval nitrogen enrichment increased egg production of adult females only when individuals developed with high sodium availability. Ovipositing females preferred nitrogen-enriched leaves regardless of sodium availability, while larvae avoided feeding on nitrogen-enriched leaves elevated in sodium. Our results show that anthropogenic increases in sodium influence whether individuals benefit from and forage on nitrogen-enriched resources. Yet, different nitrogen-to-sodium ratios are required to optimize larval and adult performance. Whether increases in sodium catalyze or inhibit benefits of nitrogen enrichment may depend on how evolved nutrient requirements vary across stages of animal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be deposited on Mendeley upon acceptance of the manuscript.

References

  • Adams T, Pennings SC (2022) Dietary protein and sodium co-limit cockroach growth and reproduction. Ecolog Entomol 47(5):831–841

    Article  Google Scholar 

  • Altermatt F, Pearse IS (2011) Similarity and specialization of the larval versus adult diet of European butterflies and moths. Am Nat 178(3):372–382

    Article  PubMed  Google Scholar 

  • Arms K, Feeny P, Lederhouse RC (1974) Sodium: stimulus for puddling behavior by tiger swallowtail butterflies. Papilio Glaucus Science 185(4148):372–374

    CAS  PubMed  Google Scholar 

  • Beck J, Fiedler K (2009) Adult life spans of butterflies (Lepidoptera: Papilionoidea+ Hesperioidea): broadscale contingencies with adult and larval traits in multi-species comparisons. Biol J Lin Soc 96(1):166–184

    Article  Google Scholar 

  • Benes SE, Aragüés R, Grattan SR, Austin RB (1996) Foliar and root absorption of Na+ and Cl− in maize and barley: Implications for salt tolerance screening and the use of saline sprinkler irrigation. Plant Soil 180(1):75–86

    Article  CAS  Google Scholar 

  • Bettez ND, Marino R, Howarth RW, Davidson EA (2013) Roads as nitrogen deposition hot spots. Biogeochemistry 114(1):149–163

    Article  CAS  Google Scholar 

  • Bolker BM (2015) Linear and generalized linear mixed models. Contemporary theory and application, Ecological Statistics, pp 309–333

    Google Scholar 

  • Borer ET, Lind EM, Firn J, Seabloom EW, Anderson TM, Bakker ES et al (2019) More salt, please: global patterns, responses and impacts of foliar sodium in grasslands. Ecol Lett 22(7):1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Browne LB (1995) Ontogenic changes in feeding behavior. Regulatory mechanisms in insect feeding. Springer, Boston, MA, pp 307–342

    Chapter  Google Scholar 

  • Cape JN, Tang YS, Van Dijk N, Love L, Sutton MA, Palmer SCF (2004) Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environ Pollut 132(3):469–478

    Article  CAS  PubMed  Google Scholar 

  • Chavarria-Pizzaro L, Mccreery HF, Lawson SP, Winston ME, O’Donnell SEAN (2012) Sodium-specific foraging by leafcutter ant workers (Atta cephalotes, Hymenoptera: Formicidae). Ecolog Entomol 37(5):435–438

    Article  Google Scholar 

  • Chen Y, Ruberson JR, Olson DM (2008) Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126(3):244–255

    Article  CAS  Google Scholar 

  • Da Silva JF, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press

    Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739

    Article  CAS  PubMed  Google Scholar 

  • Espeset A, Kobiela ME, Sikkink KL, Pan T, Roy C, Snell-Rood EC (2019) Anthropogenic increases in nutrients alter sexual selection dynamics: a case study in butterflies. Behav Ecol 30(3):598–608

    Article  Google Scholar 

  • Fay PA, Prober SM, Harpole WS, Knops JM, Bakker JD, Borer ET et al (2015) Grassland productivity limited by multiple nutrients. Nature Plants 1(7):1–5

    Article  Google Scholar 

  • Finkelstein CJ, CaraDonna PJ, Gruver A, Welti EA, Kaspari M, Sanders NJ (2022) Sodium-enriched floral nectar increases pollinator visitation rate and diversity. Biol Let 18(3):20220016

    Article  CAS  Google Scholar 

  • Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124(2):235–241

    Article  CAS  PubMed  Google Scholar 

  • Fox, J., & Weisberg, S. (2011). An R companion to applied regression. Sage Publications.

  • Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N (2014) Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci Rep 4(1):1–8

    Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME et al (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14(9):852–862

    Article  PubMed  Google Scholar 

  • Hebert D, Cowan IM (1971) Natural salt licks as a part of the ecology of the mountain goat. Can J Zool 49(5):605–610

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Jobbagy EG (2005) From icy roads to salty streams. Proc Natl Acad Sci 102(41):14487–14488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14(3):350–356

    Article  CAS  PubMed  Google Scholar 

  • Jaumann S, Snell-Rood EC (2017) Trade-offs between fecundity and choosiness in ovipositing butterflies. Anim Behav 123:433–440

    Article  Google Scholar 

  • Kaspari M (2020) The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecol Lett 23(7):1153–1168

    Article  PubMed  Google Scholar 

  • Kaspari M, Clay NA, Donoso DA, Yanoviak SP (2014) Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. Ecology 95(4):795–800

    Article  PubMed  Google Scholar 

  • Kaspari M, Roeder KA, Benson B, Weiser MD, Sanders NJ (2017) Sodium co-limits and catalyzes macronutrients in a prairie food web. Ecology 98(2):315–320

    Article  PubMed  Google Scholar 

  • Klop E, Omon B, WallisDeVries MF (2015) Impact of nitrogen deposition on larval habitats: the case of the Wall Brown butterfly Lasiommata megera. J Insect Conserv 19(2):393–402

    Article  Google Scholar 

  • Kurze S, Heinken T, Fartmann T (2017) Nitrogen enrichment of host plants has mostly beneficial effects on the life-history traits of nettle-feeding butterflies. Acta Oecologica 85:157–164

    Article  Google Scholar 

  • Kurze S, Heinken T, Fartmann T (2018) Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species. Oecologia 188(4):1227–1237

    Article  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379

    Article  PubMed  Google Scholar 

  • Lee KP, Behmer ST, Simpson SJ, Raubenheimer D (2002) A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J Insect Physiol 48(6):655–665

    Article  CAS  PubMed  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11(1):119–161

    Article  Google Scholar 

  • Mitchell TS, Shephard AM, Kalinowski CR, Kobiela ME, Snell-Rood EC (2019) Butterflies do not alter oviposition or larval foraging in response to anthropogenic increases in sodium. Anim Behav 154:121–129

    Article  Google Scholar 

  • Mitchell TS, Agnew L, Meyer R, Sikkink KL, Oberhauser KS, Borer ET, Snell-Rood EC (2020) Traffic influences nutritional quality of roadside plants for monarch caterpillars. Sci Total Environ 724:138045

    Article  CAS  PubMed  Google Scholar 

  • Mitra C, Reynoso E, Davidowitz G, Papaj D (2016) Effects of sodium puddling on male mating success, courtship and flight in a swallowtail butterfly. Anim Behav 114:203–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau G, Bauce É (2003) Feeding behavior of spruce budworm (Lepidoptera: Tortricidae) larvae subjected to multiple exposures of Bacillus thuringiensis variety kurstaki. Ann Entomol Soc Am 96(3):231–236

    Article  Google Scholar 

  • Myers JH, Post BJ (1981) Plant nitrogen and fluctuations of insect populations: a test with the cinnabar moth—tansy ragwort system. Oecologia 48(2):151–156

    Article  PubMed  Google Scholar 

  • Nessel MP, Konnovitch T, Romero GQ, González AL (2021) Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biol Rev 96(6):2617–2637

    Article  CAS  PubMed  Google Scholar 

  • Novotny EV, Sander AR, Mohseni O, Stefan HG (2009) Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour Res. https://doi.org/10.1029/2009WR008141

    Article  Google Scholar 

  • Nylin S, Janz N (1993) Ovi position preference and larval performance in Polygonia c-album (Lepidoptera: Nymphalidae): the choice between bad and worse. Ecolog Entomo 18(4):394–398

    Article  Google Scholar 

  • Peterson TN, Welti EA, Kaspari M (2021) Dietary sodium levels affect grasshopper growth and performance. Ecosphere 12(3):e03392

    Article  Google Scholar 

  • Pivnick KA, McNeil JN (1987) Puddling in butterflies: sodium affects reproductive success in Thymelicus lineola. Physiol Entomol 12(4):461–472

    Article  Google Scholar 

  • Plotkin D, Goddard J (2013) Blood, sweat, and tears: a review of the hematophagous, sudophagous, and lachryphagous Lepidoptera. J Vector Ecol 38(2):289–294

    Article  PubMed  Google Scholar 

  • Prather CM, Laws AN, Cuellar JF, Reihart RW, Gawkins KM, Pennings SC (2018) Seeking salt: herbivorous prairie insects can be co-limited by macronutrients and sodium. Ecol Lett 21(10):1467–1476

    Article  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SE, Yeomans MR, Timmins WA (1986) The feeding behaviour of caterpillars (Manduca sexta) on tobacco and on artificial diet. Physiol Entomol 11(1):39–51

    Article  Google Scholar 

  • Root RB, Kareiva PM (1984) The search for resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65(1):147–165

    Article  Google Scholar 

  • Ryan SF, Lombaert E, Espeset A, Vila R, Talavera G, Dincă V et al (2019) Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc Natl Acad Sci 116(40):20015–20024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M (2021) No escape: the influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 11(20):14231–14249

    Article  PubMed  PubMed Central  Google Scholar 

  • Schetter TA, Lochmiller RL, Leslie DM Jr, Engle DM, Payton ME (1998) Examination of the nitrogen limitation hypothesis in non-cyclic populations of cotton rats (Sigmodon hispidus). J Anim Ecol 67(5):705–721

    Article  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17(10):474–480

    Article  Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci 106(1):203–208

    Article  CAS  PubMed  Google Scholar 

  • Shephard AM, Zambre AM, Snell-Rood EC (2021a) Evaluating costs of heavy metal tolerance in a widely distributed, invasive butterfly. Evol Appl 14(5):1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shephard AM, Mitchell TS, Snell-Rood EC (2021b) Monarch caterpillars are robust to combined exposure to the roadside micronutrients sodium and zinc. Cons Physiol. https://doi.org/10.1093/conphys/coab061

    Article  Google Scholar 

  • Shephard AM, Agnew L, Herdtle A, Mitchell TS, Borer ET, Snell-Rood EC (2022) Traffic patterns, more than adjacent land use, influence element content of roadside forbs for insect pollinators. Ecolog Solut Evid 3(4):e12195

    Google Scholar 

  • Slansky F Jr, Feeny P (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol Monogr 47(2):209–228

    Article  Google Scholar 

  • Smedley SR, Eisner T (1996) Sodium: a male moth’s gift to its offspring. Proc Natl Acad Sci 93(2):809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    Article  CAS  Google Scholar 

  • Snell-Rood EC, Espeset A, Boser CJ, White WA, Smykalski R (2014) Anthropogenic changes in sodium affect neural and muscle development in butterflies. Proc Natl Acad Sci 111(28):10221–10226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snell-Rood E, Cothran R, Espeset A, Jeyasingh P, Hobbie S, Morehouse NI (2015) Life-history evolution in the anthropocene: Effects of increasing nutrients on traits and trade-offs. Evol Appl 8(7):635–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterner RW, Elser JJ (2017) Ecological stoichiometry. Princeton University Press

    Google Scholar 

  • Swanson EM, Espeset A, Mikati I, Bolduc I, Kulhanek R, White WA et al (2016) Nutrition shapes life-history evolution across species. Proc R Soc B 283(1834):20152764

    Article  PubMed  PubMed Central  Google Scholar 

  • Telang A, Booton V, Chapman RF, Wheeler DE (2001) How female caterpillars accumulate their nutrient reserves. J Insect Physiol 47(9):1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Troetschler RG, Malone CM, Bucago ER, Johnston MR (1985) System for rearing Pieris rapae (Lepidoptera: Pieridae) on a noncruciferous artificial diet developed for Manduca sexta (Lepidoptera: Sphingidae). J Econ Entomol 78(6):1521–1523

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  • Waldbauer GP, Friedman S (1991) Self-selection of optimal diets by insects. Annu Rev Entomol 36(1):43–63

    Article  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K et al (2007) Evolutionary control of leaf element composition in plants. New Phytol 174(3):516–523

    Article  CAS  PubMed  Google Scholar 

  • White TC (1978) The importance of a relative shortage of food in animal ecology. Oecologia 33(1):71–86

    Article  CAS  PubMed  Google Scholar 

  • White, T. C. (2012). The inadequate environment: nitrogen and the abundance of animals. Springer Science & Business Media

Download references

Funding

This study was funded by a grant awarded to KK by the Undergraduate Research Opportunities Program at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Contributions

AMS, KK, and ECS-R conceived and designed the experiments. AMS and KK performed the experiments and analyzed the data. AMS wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Alexander M. Shephard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval is not required for non-native insects, such as Pieris rapae.

Additional information

Communicated by Konrad Fiedler.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shephard, A.M., Knudsen, K. & Snell-Rood, E.C. Anthropogenic sodium influences butterfly responses to nitrogen-enriched resources: implications for the nitrogen limitation hypothesis. Oecologia 201, 941–952 (2023). https://doi.org/10.1007/s00442-023-05366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05366-1

Keywords

Navigation