Skip to main content
Log in

Carbohydrate reserves in the facilitator cushion plant Laretia acaulis suggest carbon limitation at high elevation and no negative effects of beneficiary plants

  • Physiological ecology - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The elevational range of the alpine cushion plant Laretia acaulis (Apiaceae) comprises a cold upper extreme and a dry lower extreme. For this species, we predict reduced growth and increased non-structural carbohydrate (NSC) concentrations (i.e. carbon sink limitation) at both elevational extremes. In a facilitative interaction, these cushions harbor other plant species (beneficiaries). Such interactions appear to reduce reproduction in other cushion species, but not in L. acaulis. However, vegetative effects may be more important in this long-lived species and may be stronger under marginal conditions. We studied growth and NSC concentrations in leaves and stems of L. acaulis collected from cushions along its full elevational range in the Andes of Central Chile. NSC concentrations were lowest and cushions were smaller and much less abundant at the highest elevation. At the lowest elevation, NSC concentrations and cushion sizes were similar to those of intermediate elevations but cushions were somewhat less abundant. NSC concentrations and growth did not change with beneficiary cover at any elevation. Lower NSC concentrations at the upper extreme contradict the sink-limitation hypothesis and may indicate that a lack of warmth is not limiting growth at high-elevation. At the lower extreme, carbon gain and growth do not appear more limiting than at intermediate elevations. The lower population density at both extremes suggests that the regeneration niche exerts important limitations to this species’ distribution. The lack of an effect of beneficiaries on reproduction and vegetative performance suggests that the interaction between L. acaulis and its beneficiaries is probably commensalistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams HD et al (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Al Hayek P, Touzard B, Le Bagousse-Pinguet Y, Michalet R (2014) Phenotypic differentiation within a foundation grass species correlates with species richness in a subalpine community. Oecologia 176(2):533–544

    Article  PubMed  Google Scholar 

  • Armesto JA, Arroyo MTK, Villagrán C (1980) Altitudinal distribution, cover and size structure of umbelliferous cushion plants in the high Andes of central Chile. Acta Oecol 1:327–332

    Google Scholar 

  • Arroyo MTK, Armesto JA, Villagran C (1981) Plant phenological patterns in the high Andean Cordillera of central Chile. J Ecol 69:205–223

    Article  Google Scholar 

  • Aubert S, Boucher F, Lavergne S, Renaud J, Choler P (2014) 1914–2014: a revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alp Bot 124(1):59–70

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) Package lme4: Linear mixed-effects models using Eigen and S4 R package version 1.0-5

  • Billings W, Mooney H (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Bonanomi G, Stinca A, Chirico GB, Ciaschetti G, Saracino A, Incerti G (2016) Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient. Funct Ecol 30:1216–1226

    Article  Google Scholar 

  • Cavieres LA, Arroyo MTK (1999) Tasa de enfriamiento adiabático del aire en el valle del río Molina, provincia de Santiago, Chile central (33 S). Revista Geográfica de Chile Terra Australis 44:79–86

    Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro M (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69

    Article  PubMed  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro M (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39:229–236

    Article  Google Scholar 

  • Cavieres LA et al (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202

    Article  PubMed  Google Scholar 

  • Cavieres LA, Hernández-Fuentes C, Sierra-Almeida A, Kikvidze Z (2016) Facilitation among plants as an insurance policy for diversity in Alpine communities. Funct Ecol 30:52–59

    Article  Google Scholar 

  • Cranston BH, Callaway RM, Monks A, Dickinson KJ (2012) Gender and abiotic stress affect community-scale intensity of facilitation and its costs. J Ecol 100:915–922

    Article  Google Scholar 

  • Di Castri F, Hajek E (1976) Bioclimatología de Chile. Ediciones de la Pontificia Universidad Católica de Chile, Santiago

    Google Scholar 

  • Fajardo A, Piper FI (2014) An experimental approach to explain the southern Andes elevational treeline. Am J Bot 101:788–795

    Article  PubMed  Google Scholar 

  • Fajardo A, Piper FI, Pfund L, Körner C, Hoch G (2012) Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytol 195:794–802

    Article  CAS  PubMed  Google Scholar 

  • Fick WH, Nolte DL (1986) Field collection techniques for total nonstructural carbohydrate analysis of plant storage organs. Trans Kans Acad Sci 89:40–44

    Article  Google Scholar 

  • Fox J et al. (2011) Package car: Companion to applied regression, 2.0–25 edn. Sage. http://www.r-project.org/

  • Galvez DA, Landhäusser S, Tyree M (2013) Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytol 198:139–148

    Article  PubMed  Google Scholar 

  • García MC, Bader MY, Cavieres LA (2016) Facilitation consequences for reproduction of the benefactor cushion plant Laretia acaulis along an elevational gradient: costs or benefits? Oikos 125:434–442

    Article  Google Scholar 

  • Gibson N, Kirkpatrick JB (1985) A comparison of the cushion plant communities of New Zealand and Tasmania. N Z J Bot 23:549–566

    Article  Google Scholar 

  • Giraudoux P (2011) pgirmess: Data analysis in ecology. R package version 1.5. 1

  • Hager J, Faggi AM (1990) Observaciones sobre distribución y microclima de cojines enanos de la isla de Creta y del noroeste de la Patagonia. Parodiana 6:109–127

    Google Scholar 

  • Halloy SRP (2002) Variations in community structure and growth rates of high-Andean plants with climatic fluctuations. In: Körner C, Spehn EM (eds) Mountain biodiversity. A global assessment. Taylor & Francis, Parthenon, London, pp 225–238

    Google Scholar 

  • Hauri H (1913) Anabasis aretioides Moq. et Coss., eine Polsterpflanze der algerischen Sahara. Mit einem Anhang, die Kenntnis der Angiospermenpolsterpflanzen überhaupt betreffend. J Ecol 1:118–121

    Article  Google Scholar 

  • Hoch G (2015) Carbon reserves as indicators for carbon limitation in trees. In: Lüttge U, Beyschlag W (eds) Progress in botany, vol 76. Springer, Berlin, pp 321–346

    Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    Article  PubMed  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–871

    Article  Google Scholar 

  • Holzapfel C, Mahall BE (1999) Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80:1747–1761

    Article  Google Scholar 

  • Kleier C, Rundel PW (2004) Microsite requirements, population structure and growth of the cushion plant Azorella compacta in the tropical Chilean Andes. Austral Ecol 29:461–470

    Article  Google Scholar 

  • Klein T, Hoch G, Yakir D, Körner C (2014) Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiol 34:981–992

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2008) Winter crop growth at low temperature may hold the answer for alpine treeline formation. Plant Ecol Divers 1(1):3–11

    Article  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media, Basel

    Book  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, Cambridge

    Google Scholar 

  • Landhäusser SM, Lieffers VJ (2003) Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees 17:471–476

    Article  Google Scholar 

  • Lenth R, Hervé M (2014) lsmeans: Least-Squares Means. R package (version 2.13). http://CRAN.R-project.org/package=lsmeans

  • Louda SM, Collinge SK (1992) Plant resistance to insect herbivores: a field test of the environmental stress hypothesis. Ecology 73:153–169

    Article  Google Scholar 

  • Martinez SG (2003) Umbelliferae. In: Kiesling R (ed) Reseña de Flora de San Juan 2. Dicotiledóneas dialipétalas (segunda parte): Oxalidáceas a Umbelíferas, vol 41, Darwiniana, pp 214–234

  • Michalet R et al (2011) Phenotypic variation in nurse traits and community feedbacks define an alpine community. Ecol Lett 14:433–443

    Article  PubMed  Google Scholar 

  • Michalet R et al (2016) Beneficiary feedback effects on alpine cushion benefactors become more negative with increasing cover of graminoids and in dry conditions. Funct Ecol 30(1):79–87

    Article  Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    Article  CAS  PubMed  Google Scholar 

  • Monson RK, Rosenstiel TN, Forbis TA, Lipson DA, Jaeger CH (2006) Nitrogen and carbon storage in alpine plants. Integr Comp Biol 46:35–48

    Article  CAS  PubMed  Google Scholar 

  • Piper FI, Cavieres LA, Reyes-Díaz M, Corcuera LJ (2006) Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecol 185:29–39

    Article  Google Scholar 

  • Piper FI, Viñegla B, Linares JC, Camarero JJ, Cavieres LA, Fajardo A (2016) Mediterranean and temperate treelines are controlled by different environmental drivers. J Ecol 104:691–702

    Article  Google Scholar 

  • Quentin AG et al (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. doi:10.1093/treephys/tpv073

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ralph CP (1978) Observations on Azorella compacta (Umbelliferae), a tropical Andean cushion plant. Biotropica 10:62–67

    Article  Google Scholar 

  • Rozzi R, Molina JD, Miranda P (1989) Microclima y periodos de floración en laderas de exposición ecuatorial y polar en los Andes de Chile central. Rev Chil Hist Nat 62:75–84

    Google Scholar 

  • Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant, Cell Environ 32:22–30

    Article  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    Article  CAS  PubMed  Google Scholar 

  • Schädel C, Blöchl A, Richter A, Hoch G (2009) Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol 29:901–911

    Article  PubMed  Google Scholar 

  • Schöb C et al (2014a) A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytol 202:95–105

    Article  PubMed  Google Scholar 

  • Schöb C, Prieto I, Armas C, Pugnaire FI (2014b) Consequences of facilitation: one plant’s benefit is another plant’s cost. Funct Ecol 28:500–508

    Article  Google Scholar 

  • Sortibrán L, Verdú M, Valiente-Banuet A (2014) Nurses experience reciprocal fitness benefits from their distantly related facilitated plants. Perspect Plant Ecol Evol Syst 16:228–235

    Article  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289

    Article  CAS  PubMed  Google Scholar 

  • Wyka T (1999) Carbohydrate storage and use in an alpine population of the perennial herb, Oxytropis sericea. Oecologia 120:198–208

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by MECESUP2, F ICM P05-02 and PFB-023 supporting the Institute of Ecology and Biodiversity (IEB), and the German Academic Exchange Service (DAAD). Support from the ECOBIOSIS working group at the University of Concepcion and the Functional Ecology of Plants laboratory at the University of Oldenburg is much appreciated. We thank Ingeborg Eden who conducted the HPLC analysis for helpful recommendations during NSC extractions. Alicia Marticorena helped with the procedure of sample exportation. Frida Piper provided valuable comments on the manuscript. Finally, we thank Simon Pfanzelt, Erika García Lino and Juan Concha for their help in the field.

Author contribution statement

MCGL and MYB conceived and designed the methodology. MCGL performed the data collection and statistical analysis. All the authors discussed the results. MCGL and MYB wrote the manuscript and other authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Carolina García Lino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Stephan Hattenschwiler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Lino, M.C., Cavieres, L.A., Zotz, G. et al. Carbohydrate reserves in the facilitator cushion plant Laretia acaulis suggest carbon limitation at high elevation and no negative effects of beneficiary plants. Oecologia 183, 997–1006 (2017). https://doi.org/10.1007/s00442-017-3840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3840-5

Keywords

Navigation