Skip to main content

Advertisement

Log in

Are aphid parasitoids from mild winter climates losing their winter diapause?

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Temperature is both a selective pressure and a modulator of the diapause expression in insects from temperate regions. Thus, with climate warming, an alteration of the response to seasonal changes is expected, either through genetic adaptations to novel climatic conditions or phenotypic plasticity. Since the 1980s in western France, the winter guild of aphid parasitoids (Hymenoptera: Braconidae) in cereal fields has been made up of two species: Aphidius rhopalosiphi and Aphidius matricariae. The recent activity of two other species, Aphidius avenae and Aphidius ervi, during the winter months suggests that a modification of aphid parasitoid overwintering strategies has taken place within the guild. In this study, we first performed a field survey in the winter of 2014/15 to assess levels of parasitoid diapause incidence in agrosystems. Then, we compared the capacity of the four parasitoid species to enter winter diapause under nine different photoperiods and temperature conditions in the laboratory. As predicted, historically winter-active species (A. rhopalosiphi and A. matricariae) never entered diapause, whereas the species more recently active during winter (A. avenae and A. ervi) did enter diapause but at a low proportion (maximum of 13.4 and 11.2%, respectively). These results suggest rapid shifts over the last three decades in the overwintering strategies of aphid parasitoids in Western France, probably due to climate warming. This implies that diapause can be replaced by active adult overwintering, with potential consequences for species interactions, insect community composition, ecosystem functioning, and natural pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alford L, Andrade TO, Georges R et al (2014) Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields? PLoS One 9:e114982

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrade TO, Outreman Y, Krespi L et al (2015) Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems. Ecosphere 6:1–14. doi:10.1890/ES15-00010.1

    Article  Google Scholar 

  • Andrade TO, Krespi L, Bonnardot V et al (2016) Impact of change in winter strategy of one parasitoid species on the diversity and function of a guild of parasitoids. Oecologia 180:877–888. doi:10.1007/s00442-015-3502-4

    Article  PubMed  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994. doi:10.1242/jeb.037911

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci 98:14509–14511. doi:10.1073/pnas.241391498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodeur J, McNeil JN (1989a) Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae). J Insect Physiol 35:969–974

    Article  Google Scholar 

  • Brodeur J, McNeil JN (1989b) Seasonal microhabitat selection by an endoparasitoid through adaptive modification of host behaviour. Science 244:226–228

    Article  CAS  PubMed  Google Scholar 

  • Brodeur J, McNeil JN (1990) Overwintering microhabitat selection by an endoparasitoid (Hymenoptera: Aphidiidae): induced phototactic and thigmokinetic responses in dying hosts. J Insect Behav 3:751–763

    Article  Google Scholar 

  • Brodeur J, McNeil JN (1994) Seasonal Ecology of Aphidius nigripes (Hymenoptera: Aphidiidae), a parasitoid of Macrosiphum euphorbiae (Homoptera: Aphididae). Environ Entomol 23:292–298

    Article  Google Scholar 

  • Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393. doi:10.1111/j.1365-2435.2007.01289.x

    Article  Google Scholar 

  • Chaianunporn T, Hovestadt T (2015) Evolutionary responses to climate change in parasitic systems. Glob Change Biol 21:2905–2916. doi:10.1111/gcb.12944

    Article  Google Scholar 

  • Christiansen-Weniger P, Hardie J (1999) Environmental and physiological factors for diapause induction and termination in the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae). J Insect Physiol 45:357–364

    Article  CAS  PubMed  Google Scholar 

  • Danks HV (1987) Insect dormancy: an ecological perspective. Biological survey of Canada (Terrestrial Arthropods)

  • Dean GJ (1974) The overwintering and abundance of cereal aphids. Ann Appl Biol 76:1–7

    Article  Google Scholar 

  • Dedryver C-A, Hullé M, Le Gallic J-F et al (2001) Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia 128:379–388. doi:10.1007/s004420100674

    Article  CAS  PubMed  Google Scholar 

  • Development Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ellers J, Van Alphen JJ (2002) A trade-off between diapause duration and fitness in female parasitoids. Ecol Entomol 27:279–284

    Article  Google Scholar 

  • Fox J, Weisberg HS (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Gariepy V, Boivin G, Brodeur J (2015) Why two species of parasitoids showed promise in the laboratory but failed to control the soybean aphid under field conditions. Biol Control 80:1–7. doi:10.1016/j.biocontrol.2014.09.006

    Article  Google Scholar 

  • Gómez-Marco F, Urbaneja A, Jaques JA et al (2015) Untangling the aphid-parasitoid food web in citrus: can hyperparasitoids disrupt biological control? Biol Control 81:111–121. doi:10.1016/j.biocontrol.2014.11.015

    Article  Google Scholar 

  • Gómez-Marco F, Urbaneja A, Tena A (2016) A sown grass cover enriched with wild forb plants improves the biological control of aphids in citrus. Basic Appl Ecol 17:210–219. doi:10.1016/j.baae.2015.10.006

    Article  Google Scholar 

  • Gordo O, Brotons L, Ferrer X, Comas P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob Change Biol 11:12–21. doi:10.1111/j.1365-2486.2004.00875.x

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126. doi:10.1146/annurev.ento.52.110405.091333

    Article  CAS  PubMed  Google Scholar 

  • Hughes GE (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  CAS  PubMed  Google Scholar 

  • Hullé M, Turpeau E, Chaubet B (2006) Encyclop’aphid, a key for aphids and their parasitoids. In: INRA (French Institute for Agronomical Research)

  • IPCC (2013) Climate change 2013: the physical science basis: final draft underlying scientific-technical assessment: working group I contribution to the IPCC fifth assessment report. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, p 1535. ISBN 978-1-107-05799-1, 978-1-107-66182-0

  • Ito K (2007) Negative genetic correlation between diapause duration and fecundity after diapause in a spider mite. Ecol Entomol 32:643–650

    Article  Google Scholar 

  • Krespi L (1990) Etude de la biocénose parasitaire des pucerons des céréales dans le bassin de Rennes: cas particulier d’Aphidius uzbekistanicus Luz. PhD dissertation. Université de Rennes 1, France

  • Krespi L, Dedryver C-A, Creach V et al (1997) Variability in the development of cereal aphid parasitoids and hyperparasitoids in oceanic regions as a response to climate and abundance of hosts. Popul Ecol 26:545–551

    Google Scholar 

  • Lahti DC, Johnson NA, Ajie BC et al (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496. doi:10.1016/j.tree.2009.03.010

    Article  PubMed  Google Scholar 

  • Langer A, Hance T (2000) Overwintering strategies and cold hardiness of two aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae). J Insect Physiol 46:671–676

    Article  CAS  PubMed  Google Scholar 

  • Langer A, Stilmant D, Verbois D, Hance T (1997) Seasonal activity and distribution of cereal aphid parasitoids in Belgium. Entomophaga 42:185–191

    Article  Google Scholar 

  • Le Lann C, Roux O, Serain N et al (2011a) Thermal tolerance of sympatric hymenopteran parasitoid species: does it match seasonal activity? Physiol Entomol 36:21–28. doi:10.1111/j.1365-3032.2010.00758.x

    Article  Google Scholar 

  • Le Lann C, Wardziak T, van Baaren J, van Alphen JJM (2011b) Thermal plasticity of metabolic rates linked to life-history traits and foraging behaviour in a parasitic wasp: temperature affects physiology and behaviour of a parasitoid. Funct Ecol 25:641–651. doi:10.1111/j.1365-2435.2010.01813.x

    Article  Google Scholar 

  • Leather SR (1992) Aspects of aphid overwintering (Homoptera: Aphidinea: Aphididae). Entomol Gen 17:101–113. doi:10.1127/entom.gen/17/1992/101

    Article  Google Scholar 

  • Legrand MA, Colinet H, Vernon P, Hance T (2004) Autumn, winter and spring dynamics of aphid Sitobion avenae and parasitoid Aphidius rhopalosiphi interactions. Ann Appl Biol 145:139–144

    Article  Google Scholar 

  • Lumbierres B, Starý P, Pons X (2007) Seasonal parasitism of cereal aphids in a Mediterranean arable crop system. J Pest Sci 80:125–130. doi:10.1007/s10340-006-0159-0

    Article  Google Scholar 

  • Mehrnejad MR, Copland MJ (2005) Diapause strategy in the parasitoid Psyllaephagus pistaciae. Entomol Exp Appl 116:109–114

    Article  Google Scholar 

  • Neuville S, Le Ralec A, Outreman Y, Jaloux B (2015) The delay in arrival of the parasitoid Diaeretiella rapae influences the efficiency of cabbage aphid biological control. Biocontrol. doi:10.1007/s10526-015-9702-3

    Google Scholar 

  • Paolucci S, van de Zande L, Beukeboom LW (2013) Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J Evol Biol 26:705–718. doi:10.1111/jeb.12113

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 521:37–42

    Article  Google Scholar 

  • Polgár LA, Hardie J (2000) Diapause induction in aphid parasitoids. Entomol Exp Appl 97:21–27

    Article  Google Scholar 

  • Rabasse J, Dedryver C (1982) Overwintering of primary parasites and hyperparasites of cereal aphids in western France. In: Aphid antagonists. Proceedings of a meeting of the EC Experts’ Group, Portici, Italy, 23–24 November 1982. AA Balkema, pp 57–64

  • Saunders DS (ed) (2002) Insect clocks, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Sigsgaard L (2000) The temperature-dependent duration of development and parasitism of three cereal aphid parasitoids, Aphidius ervi, A. rhopalosiphi, and Praon volucre. Entomol Exp Appl 95:173–184

    Article  Google Scholar 

  • Sigsgaard L (2002) A survey of aphids and aphid parasitoids in cereal fields in Denmark, and the parasitoids’ role in biological control. J Appl Entomol 126:101–107

    Article  Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York

    Google Scholar 

  • Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332

    Article  CAS  PubMed  Google Scholar 

  • Tougeron K, van Baaren J, Burel F, Alford L (2016) Comparing thermal tolerance across contrasting landscapes: first steps towards understanding how landscape management could modify ectotherm thermal tolerance. Insect Conser Diver 9:171–180. doi:10.1111/icad.12153

    Article  Google Scholar 

  • Vázquez DP, Gianoli E, Morris WF, Bozinovic F (2015) Ecological and evolutionary impacts of changing climatic variability. Biol Rev. doi:10.1111/brv.12216

    PubMed  Google Scholar 

  • Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Williams CM, Marshall KE, MacMillan HA et al (2012) Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS One 7:e34470. doi:10.1371/journal.pone.0034470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winterhalter WE, Mousseau TA (2007) Patterns of phenotypic and genetic variation for the plasticity of diapause incidence. Evolution 61:1520–1531. doi:10.1111/j.1558-5646.2007.00127.x

    Article  PubMed  Google Scholar 

  • Zhou X, Harrington R, Woiwod I et al (1995) Effects of temperature on aphid phenology. Glob Change Biol 1:303–313

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the French Région Bretagne (Grant ARED awarded to KT) and by the Canada Research Chair in Biological Control awarded to JB. All field and laboratory works conducted in this study comply with French and Canadian laws. All applicable institutional and/or national guidelines for the care and use of animals were followed. We thank the handling editor and one anonymous reviewer for their valued comments on an earlier version of this manuscript. We are grateful to Jimmy Debuire, Stéphanie Llopis, Valérie Briand, and Josée Doyon for technical support and Paul K. Abram for English revision.

Author contribution statement

This work is part of the Ph.D. thesis of the first author. All authors conceived and designed the experiments. KT performed the experiments and conducted field work. KT analyzed the data and wrote the manuscript. All co-authors substantially contributed to revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kévin Tougeron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Roland A. Brandl.

Using fresh data and both field and laboratory experiments, we present new evidence of climate change impacts on overwintering strategies in parasitoid wasp species from mild winter areas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tougeron, K., Le Lann, C., Brodeur, J. et al. Are aphid parasitoids from mild winter climates losing their winter diapause?. Oecologia 183, 619–629 (2017). https://doi.org/10.1007/s00442-016-3770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3770-7

Keywords

Navigation