Skip to main content

Advertisement

Log in

A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Birds play a central role in the ecology of tick-borne pathogens. They expand tick populations and pathogens across vast distances and serve as reservoirs that maintain and amplify transmission locally. Research into the role of birds for supporting ticks and tick-borne pathogens has largely been descriptive and focused in small areas. To expand inference beyond these studies, we conducted a quantitative review at the scale of North America to identify avian life history correlates of tick infestation and pathogen prevalence, calculate species-level indices of importance for carrying ticks, and identify research gaps limiting understanding of tick-borne pathogen transmission. Across studies, 78 of 162 bird species harbored ticks, yielding an infestation prevalence of 1981 of 38,929 birds (5.1 %). Avian foraging and migratory strategies interacted to influence infestation. Ground-foraging species, especially non-migratory ground foragers, were disproportionately likely to have high prevalence and intensity of tick infestation. Studies largely focused on Borrelia burgdorferi, the agent of Lyme disease, and non-migratory ground foragers were especially likely to carry B. burgdorferi-infected ticks, a finding that highlights the potential importance of resident birds in local pathogen transmission. Based on infestation indices, all “super-carrier” bird species were passerines. Vast interior areas of North America, many bird and tick species, and most tick-borne pathogens, remain understudied, and research is needed to address these gaps. More studies are needed that quantify tick host preferences, host competence, and spatiotemporal variation in pathogen prevalence and vector and host abundance. This information is crucial for predicting pathogen transmission dynamics under future global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allan BR, Goessling LS, Storch GA, Thatch RE (2010) Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerg Infect Dis 16:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302

    Article  CAS  PubMed  Google Scholar 

  • American Ornithologists’ Union (AOU) (2015) The American Ornithologists’ Union checklist of north and middle American birds. http://checklist.aou.org

  • Battaly GR, Fish D (1993) Relative importance of bird species as hosts for immature Ixodes dammini (Acari: Ixodidae) in a suburban residential landscape of southern New York State. J Med Entomol 30:740–740

    Article  CAS  PubMed  Google Scholar 

  • Battaly GR, Fish D, Dowler RC (1987) The seasonal occurrence of Ixodes dammini and Ixodes dentatus (Acari: Ixodidae) on birds in a Lyme disease endemic area of southeastern New York. J N Y entomol. S 95:461–468

    Google Scholar 

  • Blancher PJ, Rosenberg KV, Panjabi AO, Altman B, Couturier AR, Thogmartin WE, Partners in Flight Science Committee (2013) Handbook to the partners in flight population estimates database, version 2.0. PIF Technical Series No. 6

  • Brinkerhoff RJ, Folsom-O’Keefe CM, Tsao K, Diuk-Wasser MA (2009) Regional variation in immature Ixodes scapularis parasitism on North American songbirds: implications for transmission of the Lyme pathogen, Borrelia burgdorferi. J Med Entomol 48:422–428

    Article  Google Scholar 

  • Brinkerhoff RJ, Folsom-O’Keefe CM, Streby HM, Bent SJ, Tsao K, Diuk-Wasser MA (2011) Do birds affect Lyme disease risk? Range expansion of the vector-borne pathogen Borrelia burgdorferi. Front Ecol Environ 9:103–110

    Article  Google Scholar 

  • Burnham KP, Anderson DA (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Centers for Disease Control (CDC) (2013a) Statistics| Rocky Mountain spotted fever. http://www.cdc.gov/rmsf/stats/

  • Centers for Disease Control (CDC) (2013b) Ehrlichiosis Statistics and Epidemiology. http://www.cdc.gov/ehrlichiosis/stats/

  • Centers for Disease Control (CDC) (2015a) Data and statistics| Lyme disease. http://www.cdc.gov/lyme/stats/

  • Centers for Disease Control (CDC) (2015b) Tickborne diseases of the US http://www.cdc.gov/ticks/diseases/

  • Cohen EB, Auckland LD, Marra PP, Hamer SA (2015) Avian migrants facilitate invasions of Neotropical ticks and tick-borne pathogens into the United States. Appl Environ Microbiol 81:8366–8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comstedt P, Bergström S, Olsen B, Garpmo U, Marjavaara L, Mejlon H, Barbour AG, Bunikis J (2006) Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg Infect Dis 12:1087–1095

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornell University (2015a) The Cornell Lab of Ornithology—all about birds. http://www.allaboutbirds.org/Page.aspx?pid=1189

  • Cornell University (2015b) The birds of North America online. http://bna.birds.cornell.edu/bna/

  • Dahlgren FS, Mandel EJ, Krebs JW, Massung RF, McQuiston JH (2011) Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am J Trop Med Hyg 85:124–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingler RJ, Wright SA, Donohue AM, Macedo PA, Foley JE (2014) Surveillance for Ixodes pacificus and the tick-borne pathogens Anaplasma phagocytophilum and Borrelia burgdorferi in birds from California’s Inner Coast Range. Ticks Tick-Borne Dis 5:436–445

    Article  PubMed  Google Scholar 

  • Dobson AD (2014) History and complexity in tick-host dynamics: discrepancies between ‘real’ and ‘visible’ tick populations. Parasites Vectors 7:1–9

    Article  Google Scholar 

  • Dubska L, Literak I, Kocianova E, Taragelova V, Sychra O (2009) Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe. Appl Environ Microb 75:596–602

    Article  CAS  Google Scholar 

  • Dunn EH, Ralph CJ (2004) Use of mist nets as a tool for bird population monitoring. Stud Avian Biol 29:1–6

    Google Scholar 

  • Elfving K, Olsen B, Bergstorm S, Waldenstrom J, Lundkvist A, Sjostedt A, Mejlon H, Nilsson K (2010) Dissemination of spotted fever Rickettsia agents in Europe by migrating birds. PLoS One 5:e8572

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaidet N, Cappelle J, Takekawa JY, Prosser DJ, Iverson SA, Douglas DC, Perry WM, Mundkur T, Newman SH (2010) Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry. J Appl Ecol 47:1147–1157

    Article  Google Scholar 

  • Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Schotthoefer AM, Brown WM, Wheeler E, Kitron UD (2008) Rapid amplification of West Nile virus: the role of hatch-year birds. Vector-Borne Zoonot Dis 8:57–68

    Article  Google Scholar 

  • Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, Walker ED (2009) Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80:268–278

    PubMed  Google Scholar 

  • Hamer SA, Tsao JI, Walker ED, Hickling GJ (2010) Invasion of the Lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity. EcoHealth 7:47–63

    Article  PubMed  Google Scholar 

  • Hamer SA, Hickling GJ, Sidge JL, Rosen ME, Walker ED, Tsao JL (2011) Diverse Borrelia burgdorferi strains in a bird–tick cryptic cycle. Appl Environ Microbiol 77:1999–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamer SA, Goldberg TL, Kitron UD, Brawn JD, Anderson TK, Loss SR, Walker ED, Hamer GL (2012a) Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005–2010. Emerg Infect Dis 18:1589–1595

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamer SA, Hickling GJ, Keith R, Sidge JL, Walker ED, Tsao JI (2012b) Associations of passerine birds, rabbits, and ticks with Borrelia miyamotoi and Borrelia andersonii in Michigan, USA. Parasites Vectors 5:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamer SA, Weghorst AC, Auckland LD, Roark EB, Strey OF, Teel PD, Hamer GL (2015) Comparison of DNA and carbon and nitrogen stable isotope-based techniques for tick blood meal analysis. J Med Entomol 52:1043–1049

    Article  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Hasle H (2013) Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front Cell Infect Microbiol 3:1–6

    Article  Google Scholar 

  • Hochachka WM, Dhondt AA (2000) Density-dependent decline of host abundance resulting from a new infectious disease. Proc Nat Acad Sci USA 97:5303–5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornok S et al (2013) Synanthropic birds associated with high prevalence of tick-borne Rickettsiae and with the first detection of Rickettsia aeschlimannii in Hungary. Vector-borne Zoonot Dis 13:77–83

    Article  Google Scholar 

  • Hutto RL (1981) Seasonal variation in the foraging behavior of some migratory western wood warblers. Auk 98:765–777

    Google Scholar 

  • Kahl O, Gern L, Eisen L, Lane RS (2002) Ecological research on Borrelia burgdorferi sensu lato: terminology and some methodological pitfalls. In: Gray J et al (eds) Lyme borreliosis: biology, epidemiology and control. CABI Publishing, New York

    Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Keesing F et al (2012) Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum. Emerg Infect Dis 18:2013–2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P (2006a) Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA 103:19368–19373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006b) Host heterogeneity dominates West Nile virus transmission. P Roy Soc B-Biol Sci 273:2327–2333

    Article  Google Scholar 

  • Kosoy OI, Lambert AJ, Hawkinson DJ, Pastula DM, Goldsmith CS, Hunt DC, Staples JE (2015) Novel thogotovirus associated with febrile illness and death, United States, 2014. Emerg Infect Dis 21:760–764

    Article  PubMed  PubMed Central  Google Scholar 

  • LaDeau SL, Kilpatrick AM, Marra PP (2007) West Nile virus emergence and large-scale declines of North American bird populations. Nature 447:710–713

    Article  CAS  PubMed  Google Scholar 

  • Loss SR, Loss SS, Will T, Marra PP (2014) Bird-building collisions in the United States: estimates of annual mortality and species vulnerability. Condor Ornithol Appl 116:8–23

    Google Scholar 

  • Magnarelli LA, Stafford KC III, Bladen VC (1992) Borrelia burgdorferi in Ixodes dammini (Acari: Ixodidae) feeding on birds in Lyme, Connecticut, USA. Can J Zool 70:2322–2325

    Article  Google Scholar 

  • Mathers A et al (2011) Strain diversity of Borrelia burgdorferi in ticks dispersed in North America by migratory birds. J Vector Ecol 36:24–29

    Article  PubMed  Google Scholar 

  • McClintock BT, Nichols JD, Bailey LL, MacKenzie DI, Kendall WL, Franklin AB (2009) Seeking a second opinion: uncertainty in disease ecology. Ecol Lett 13:659–674

    Article  Google Scholar 

  • McMullan LK et al (2012) A new phlebovirus associated with severe febrile illness in Missouri. New Engl J Med 367:834–841

    Article  CAS  PubMed  Google Scholar 

  • Mitra SS, Buckley PA, Buckley FG, Ginsberg HS (2010) Highly variable acquisition rates of Ixodes scapularis (Acari: Ixodidae) by birds on an Atlantic barrier island. J Med Entomol 47:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Morshed MG, Scott JD, Fernando K, Beati DF, Maerolle DF, Geddes G, Durden LA (2005) Migratory songbirds disperse ticks across Canada, and first isolation of the Lyme disease spirochete, Borrelia burgdorferi, from the avian tick, Ixodes auritulus. J Parasitol 91:780–790

    Article  PubMed  Google Scholar 

  • Mukherjee N, Beati L, Sellers M, Burton L, Adamson S, Robbins RG, Moore F, Karim S (2014) Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick-Borne Dis 5:127–134

    Article  PubMed  Google Scholar 

  • Newman EA, Eisen L, Eisen RJ, Federova N, Hasty JM, Vaughn C, Lane RS (2015) Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior, and tick infestation. PLoS One 10:e0118146

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogden NH et al (2008) Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl Environ Microbiol 74:1780–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogden NH, Mechai S, Margos G (2013) Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity. Front Cell Infect Microbiol 46:1–11

    Google Scholar 

  • Oppenshaw JJ, Swerdlow DL, Krebs JW, Holman RC, Mandel E, Harvey A, Haberling D, Massung RF, McQuiston JH (2010) Rocky Mountain Spotted Fever in the United States, 2000–2007: interpreting contemporary increases in incidence. Am J Trop Med Hyg 83:174–182

    Article  Google Scholar 

  • Pfäffle M, Littwin N, Muders SV, Petney TN (2013) The ecology of tick-borne diseases. Int J Parasitol 43:1059–1077

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rand PW, Lacombe EH, Smith RP Jr, Ficker J (1998) Participation of birds (Aves) in the emergence of Lyme disease in southern Maine. J Med Entomol 35:270–276

    Article  CAS  PubMed  Google Scholar 

  • Rappole JH, Derrickson SR, Hubalek Z (2000) Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg Infect Dis 6:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remsen JV Jr, Good DA (1996) Misuse of data from mist-net captures to assess relative abundance in bird populations. Auk 113:381–398

    Article  Google Scholar 

  • Robinson RA et al (2010) Emerging infectious disease leads to rapid population declines of common British birds. PLoS One 5:e12215

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson SJ et al (2015) Disease risk in a dynamic environment: the spread of tick-borne pathogens in Minnesota, USA. EcoHealth 12:152–163

    Article  PubMed  Google Scholar 

  • Schneider SC, Parker CM, Miller JR, Fredericks LP, Allan BF (2015) Assessing the contribution of songbirds to the movement of ticks and Borrelia burgdorferi in the Midwestern United States during fall migration. EcoHealth 12:164–173

    Article  PubMed  Google Scholar 

  • Scott MC, Rosen ME, Hamer SA, Baker E, Edwards H, Crowder C, Tsao JI, Hickling GJ (2010) High-prevalence Borrelia miyamotoi infection among wild turkeys (Meleagris gallopavo) in Tennessee. J Med Entomol 47:1238–1242

    Article  CAS  PubMed  Google Scholar 

  • Scott JD, Anderson JF, Durden LA (2012) Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada. J Parasitol 98:49–59

    Article  PubMed  Google Scholar 

  • Sibley DA (2014) The Sibley guide to birds, 2nd edn. Knopf Publishing, New York

    Google Scholar 

  • Socolovschi C, Reynaud P, Kernif T, Raoult D, Parola P (2012) Rickettsiae of spotted fever group, Borrelia valaisiana, and Coxiella burnetii in ticks on passerine birds and mammals from the Camargue in the south of France. Ticks Tick-Borne Dis 3:355–360

    Article  PubMed  Google Scholar 

  • Sonenshine DE (1979) Insects of Virignia 13: ticks of Virginia (Acari, Metastigmata). Virginia Polytechnic Institute Research Division Bulletin 139

  • Sonenshine DE, Clifford CM (1973) Contrasting incidence of Rocky Mountain spotted fever in ticks infesting wild birds in eastern US Piedmont and coastal areas, with notes on the ecology of these ticks. J Med Entomol 10:497–502

    Article  CAS  PubMed  Google Scholar 

  • Thogmartin WE, Howe FP, James FC, Johnson DH, Reed ET, Sauer JR, Thompson FR (2006) A review of the population estimation approach of the North American Landbird Conservation Plan. Auk 123:892–904

    Article  Google Scholar 

  • Vollmer SA et al (2011) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol 13:184–192

    Article  CAS  PubMed  Google Scholar 

  • Wang H-H, Grant WE, Teel PD (2012) Simulation of climate–host–parasite–landscape interactions: a spatially explicit model for ticks (Acari: Ixodidae). Ecol Model 243:42–62

    Article  Google Scholar 

  • Wang H-H, Grant WE, Teel PD, Hamer SA (2016) Tick-borne infectious agents in nature: simulated effects of changes in host density on spatial-temporal prevalence in infected ticks. Ecol Model 323:77–86

    Article  Google Scholar 

  • Weaver SC, Barrett AD (2004) Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2:789–801

    Article  CAS  PubMed  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, New York

    Google Scholar 

  • Woodworth BL et al (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci USA 102:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SA, Thompson MA, Miller MJ, Knerl KM, Elms SL, Karpowicz JC, Young JF, Kramer VL (2000) Ecology of Borrelia burgdorferi in ticks (Acari: Ixodidae), rodents, and birds in the Sierra Nevada foothills, Placer County, California. J Med Entomol 37:909–918

    Article  CAS  PubMed  Google Scholar 

  • Wright SA, Lemenager DA, Tucker JR, Armijos MV, Yamamoto SA (2006) An avian contribution to the presence of Ixodes pacificus (Acari: Ixodidae) and Borrelia burgdorferi on the Sutter Buttes of California. J Med Entomol 43:368–374

    Article  PubMed  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

Download references

Acknowledgments

We thank Faithful Williams for assistance with literature review and data management. SRL and BHN were funded by NIFA/USDA Hatch Grant funds through the Oklahoma Agricultural Experiment Station (for SRL: OKL-02915; for BHN: OKL-02902).

Author contribution statement

All authors conceived and designed the idea and developed the methodology. SRL conducted statistical analyses and wrote the manuscript. BHN, GLH, and SAH provided feedback and edits on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Loss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Hannu J. Ylonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loss, S.R., Noden, B.H., Hamer, G.L. et al. A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America. Oecologia 182, 947–959 (2016). https://doi.org/10.1007/s00442-016-3731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3731-1

Keywords

Navigation