Skip to main content
Log in

Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian

  • Physiological ecology - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ontogenetic changes in disease susceptibility have been demonstrated in many vertebrate taxa, as immature immune systems and limited prior exposure to pathogens can place less developed juveniles at a greater disease risk. By causing the disease chytridiomycosis, Batrachochytrium dendrobatidis (Bd) infection has led to the decline of many amphibian species. Despite increasing knowledge on how Bd varies in its effects among species, little is known on the interaction between susceptibility and development within host species. We compared the ontogenetic susceptibility of post-metamorphic green and golden bell frogs Litoria aurea to chytridiomycosis by simultaneously measuring three host-pathogen responses as indicators of the development of the fungus—infection load, survival rate, and host immunocompetence—following Bd exposure in three life stages (recently metamorphosed juveniles, subadults, adults) over 95 days. Frogs exposed to Bd as recently metamorphosed juveniles acquired higher infection loads and experienced lower immune function and lower survivorship than subadults and adults, indicating an ontogenetic decline in chytridiomycosis susceptibility. By corresponding with an intrinsic developmental maturation in immunocompetence seen in uninfected frogs, we suggest these developmental changes in host susceptibility in L. aurea may be immune mediated. Consequently, the physiological relationship between ontogeny and immunity may affect host population structure and demography through variation in life stage survival, and understanding this can shape management targets for effective amphibian conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RM, May RM (1979) Population biology of infection diseases. Part I. Nature 280:361–367

    Article  CAS  PubMed  Google Scholar 

  • Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, Doyle J, Llewellyn LE (2004) Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides 25:1035–1054

    Article  CAS  PubMed  Google Scholar 

  • Berger L, Speare R, Skerratt LF (2005) Distribution of Batrachochytrium dendrobatidis and pathology in the skin of green tree frogs Litoria cerulea with severe chytridiomycosis. Dis Aquatic Organ 68:65–70

    Article  Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA, Han BA, Pessier AP, Longcore JE (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1468

    Article  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquatic Organ 60:141–148

    Article  CAS  Google Scholar 

  • Briggs CJ, Vredenburg VT, Knapp RA, Rachowicz LJ (2005) Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology 86:3149–3159

    Article  Google Scholar 

  • Brodkin MA, Simon MP, DeSantis AM, Boyer KJ (1992) Response of Rana pipiens to graded doses of the bacterium Pseudomonas aeruginosa. J Herpetol 26:490–500

    Article  Google Scholar 

  • Brown GP, Shilton CM, Shine R (2011) Measuring amphibian immunocompetence: validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Meth Ecol Evol 2:341–348

    Article  Google Scholar 

  • Bull JC, Ryabov EV, Prince G, Mead A, Zhang CJ, Baxter LA, Pell JK, Osborne JL, Chandler D (2012) A strong immune response in young adult honeybees masks their increased increased susceptibility to infection compared to older bees. PLoS Pathog 8:e1003083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns-Guydish SM, Olomu IN, Zhao H, Wong RJ, Stevenson DK, Contag CH (2005) Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar typhimurium infection using an in vivo murine model. Pediatr Res 58:153–158

    Article  PubMed  Google Scholar 

  • Clulow S, Harris M, Mahony MJ (2015) Optimisation, validation and efficacy of the phytohaemagglutining inflammation assay for use in ecoimmunological studies of amphibians. Conserv Physiol 3:cov042. doi:10.1093/conphys/cov042

  • Crawford AJ, Lips KR, Bermingham E (2010) Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci 107:13777–13782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EW, Parris MJ, Collins JP, Longcore JE, Pessier AP, Brunner J (2003) Pathogenecity and transmission of chytridiomycosis in tiger salamanders (Ambystomas tigrinum). Copeia 2003:601–607

    Article  Google Scholar 

  • Fellers GM, Green DE, Longcore JE (2001) Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001:945–953

    Article  Google Scholar 

  • Ficke A, Gadoury DM, Seem RC (2002) Ontogenic resistance and plant disease management: a case study of grape powdery mildew. Phytopathology 92:671–675

    Article  PubMed  Google Scholar 

  • Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  CAS  PubMed  Google Scholar 

  • Fites JS, Reinert LK, Chappell TM, Rollins-Smith LA (2014) Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun 82:4698–4706

    Article  PubMed  PubMed Central  Google Scholar 

  • Flechas SV, Sarmiento C, Cárdenas ME, Medina EM, Restrepo S, Amézquita A (2012) Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus. PLoS One 7:e44832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner TW, Walker SF, Bosch J, Leech S, Rowcliffe M, Cunningham AA, Fisher MC (2009) Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118:783–791

    Article  Google Scholar 

  • Gavier-Widen D, Meredith A, Duff JP (eds) (2012) Infectious diseases of wild mammals and birds in Europe. Wiley, UK

    Google Scholar 

  • Gervasi SS (2013) All hosts are not created equal: variation in amphibian responses to an emerging fungal pathogen and why it matters. PhD dissertation, Oregon State University, Corvallis

  • Gillespie GR, Hunter D, Berger L, Marantelli G (2015) Rapid decline and extinction of a montane frog population in southern Australia follows detection of the amphibian pathogen Batrachochytrium dendrobatidis. Anim Conserv 18:295–302

    Article  Google Scholar 

  • Greenspan SE, Longcore JE, Calhoun AJK (2012) Host invasion by Batrachochytrium dencrobatidis: fungal and epidermal ultrastructure in model anurans. Dis Aquatic Organ 100:201–210

    Article  Google Scholar 

  • Hamer AJ (1998) Aspects of the ecology of the green and golden bell frog (Litoria aurea) on Kooragang Island, New South Wales, Australia. Master of Environmental Studies major project report, University of Newcastle, Newcastle, Australia

  • Hamer AJ, Mahony MJ (2007) Life history of an endangered amphibian challenges the declining species paradigm. Aust J Zool 55:79–88

    Article  Google Scholar 

  • Harris RN, Lauer A, Simon MA, Banning JL, Alford RA (2009) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquatic Organ 83:11–16

    Article  Google Scholar 

  • Hussain QA, Pandit AK (2012) Global amphibian declines: a review. Int J Biodivers Conserv 4:348–357

    Google Scholar 

  • James TY, Toledo LF, Rödder D, Silva Leite D, Belasen AM, Betancourt-Román CM, Jenkinson TS, Soto-Azat C, Lambertini C, Longo AV, Ruggeri J, Collins JP, Burrowes PA, Lips KR, Zamudio KR, Longcore JE (2015) Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol Evol 5:4079–4097

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson PTJ, Kellermanns E, Bowerman J (2011) Critical windows of disease risk: amphibian pathology driven by developmental changes in host resistance and tolerance. Funct Ecol 25:726–734

    Article  Google Scholar 

  • Kelly DW, Thomas H, Thieltges DW, Poulin R, Tompkins DM (2010) Trematode infection causes malformations and population effects in a declining New Zealand fish. J Anim Ecol 79:445–452

    Article  PubMed  Google Scholar 

  • Kennedy MW, Nager RG (2006) The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol Evol 21:653–655

    Article  PubMed  Google Scholar 

  • Kriger KM, Pereoglour F, Hero JM (2007) Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv Biol 21:1280–1290

    Article  PubMed  Google Scholar 

  • Kuris AM, Blaustein AR, Alio JJ (1980) Hosts as islands. Am Nat 116:570–586

    Article  Google Scholar 

  • Lam BA, Walke JB, Vredenburg VT, Harris RN (2010) Proportion of individuals with anti-Batrachochytrdium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 14:529–531

    Article  Google Scholar 

  • Lamirande EW, Nichols DK (2002) Effects of host age on susceptibility to cutaneous chytridiomycosis in blue and yellow poison dart frogs (Dendrobates tinctorius). In: The Sixth International Symposium on the Pathology of Reptiles and Amphibians

  • Langhammer PF, Burrowes PA, Lips KR, Bryant AB, Collins JP (2014) Susceptibility to the amphibian chytrid fungus varies with ontogeny in the direct-developing frog, Eleutherodactylus coqui. J Wildl Dis 50:438–446

    Article  PubMed  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et. sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Longo AV, Burrowes PA (2010) Persistence with chytridiomycosis does not assure survival of direct-developing frogs. EcoHealth 7:185–195

    Article  PubMed  Google Scholar 

  • Mahony MJ, Hamer AJ, Pickett EJ, McKenzie DJ, Stockwell MP, Garnham JI, Keely CC, Deboo ML, O’Meara J, Pollard CJ, Clulow S, Lemckert FL, Bower DS, Clulow J (2013) Identifying conservation and research priorities in the face of uncertainty: a review of the threatened bell frog complex in eastern Australia. Herptetol Conserv Biol 8:516–538

    Google Scholar 

  • Marquez M, Nava-Gonzalez F, Sanchez D, Calcagno M, Lampo M (2010) Immmunological clearance of Batrachochytrium dendrobatidis infection at a pathogen-optimal temperature in the hylid frog Hypsiboas crepitans. EcoHealth 7:380–388

    Article  CAS  PubMed  Google Scholar 

  • McConnell TH (2007) The nature of disease. Lippincott, Williams and Wilkins

    Google Scholar 

  • Muths E, Scherer RD, Pilliod DS (2011) Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease. J Appl Ecol 48:873–879

    Article  Google Scholar 

  • Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TW, Weaver G, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Santaliestra ME, Rittenhouse TAG, Cary TL, Karasov WH (2013) Interspecific and postmetamorphic variation in susceptibility of three north American anurans to Batrachochytrium dendrobatidis. J Herpetol 47:286–292

    Article  Google Scholar 

  • Penman TD (2008) Impact of a chytrid-related mortality event in a population of the green and golden bell frog Litoria aurea. Aust Zool 34:314–318

    Article  Google Scholar 

  • Pickett EJ (2009) The use of demography in population viability analysis and adaptive management of the green and golden bell frog Litoria aurea (Anura: Hylidae) within the Brickpit, Sydney Olympic Park. Honour’s thesis, the University of Newcastle, Newcastle, NSW

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    Article  PubMed  Google Scholar 

  • Pyke GH, White AW (2001) A review of the biology of the green and golden bell frog Litoria aurea. Aust Zool 31:563–598

    Article  Google Scholar 

  • Raberg L, Sim D, Read AF (2009) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814

    Article  Google Scholar 

  • Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Innate and adaptive immune defenses against a fungus linked to global amphibian declines in the South African clawed frog, Xenopus laevis. Infect Immun 78:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read AF, Graham AL, Raberg L (2008) Animal defenses against infectious agents: is damage control more important than pathogen control? PLoS Biol 6:2638–2641

    Article  CAS  Google Scholar 

  • Reeder NMM, Pessier AP, Vredenburg VT (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7:e33567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins-Smith LA (1998) Metamorphosis and the amphibian immune system. Immunol Rev 166:221–230

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Smith LA, Carey C, Longcore JE, Doersam JK, Boutte A, Bruzgal JE, Conlon JM (2002) Activity of antimicrobial skin peptides from ranid frogs against Batrachochytridium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol 26:471–479

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol 51:552–562

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum EB, Poorten TJ, Settles M, Murdoch GK, Robert J, Maddox N, Eisen MB (2009) Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 4:e6494

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblum EB, Poorten TJ, Settles M, Murdoch GK (2012) Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol 21:3110–3120

    Article  PubMed  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog killing fungus. Proc Nat Acad Sci USA 108:16705–16710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle CL, Gervasi SS, Hua J, Hammond JI, Relyea RA, Olson DH, Blaustein AR (2011) Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv Biol 25:965–974

    Article  CAS  PubMed  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid gobal decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Solomon JB (1978) Immunological milestones in ontogeny. Dev Comp Immunol 2:409–424

    Article  Google Scholar 

  • Stockwell MP, Clulow S, Clulow J, Mahony MJ (2008) The impact of the amphibian chytrid fungus Batrachochytrium dendrobatidis on a green and golden bell frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW. Aust Zool 34:379–386

    Article  Google Scholar 

  • Stockwell MP, Clulow J, Mahony MJ (2010) Host species determines whether infection load increases beyond disease-causing thresholds following exposure to the amphibian chytrid fungus. Anim Conserv 13:62–71

    Article  Google Scholar 

  • Voyles J, Berger L, Young S, Speare R, Webb R, Warner J, Rudd D, Campbell R, Skerratt LF (2007) Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis. Dis Aquatic Organ 77:113–118

    Article  CAS  Google Scholar 

  • Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585

    Article  CAS  PubMed  Google Scholar 

  • Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci 107:9689–9694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walke JB, Harris RN, Reinert LK, Rollins-Smith LA, Woodhams DC (2011) Social immunity in amphibians: evidence for vertical transmission of innate defenses. Biotropica 43:396–400

    Article  Google Scholar 

  • Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007a) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417

    Article  Google Scholar 

  • Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN (2007b) Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim Conserv 10:425–428

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank John Gould and Lachlan Campbell for animal husbandry assistance, James Garnham and Carla Pollard for qPCR assistance, and Kim Colyvas for statistical advice. This study was funded by ARC Linkage grant LP0989459 (industry partners—Australian Research Council, Sydney Olympic Park Authority, Strathfield Council, South Australian Museum, NSW Roads and Traffic Authority, NSW Department of Environment and Climate Change). The authors declare that they have no conflict of interest. All applicable institutional and/or national guidelines for the care and use of animals were followed, with approvals granted by the University of Newcastle Animal Care and Ethics Committee (A-2008-165) and NSW National Parks scientific licence (SL100190).

Author contribution statement

M. M. and J. C. obtained the funding; A. A. and M. S. performed the laboratory work; D. B. and S. C. provided the training and logistical support; all the authors contributed significantly to the experimental design; and A. A. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalina Abu Bakar.

Additional information

Communicated by Raoul Van Damme.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Bakar, A., Bower, D.S., Stockwell, M.P. et al. Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia 181, 997–1009 (2016). https://doi.org/10.1007/s00442-016-3607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3607-4

Keywords

Navigation