Skip to main content
Log in

Floral asymmetry and predation risk modify pollinator behavior, but only predation risk decreases plant fitness

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Although predators and floral herbivores can potentially decrease plant fitness by changing pollinator behaviors, studies comparing the strength of these factors as well as their additive and interactive effects on pollinator visitation and plant fitness have not been conducted. In this study, we manipulated the floral symmetry and predator presence (artificial crab spiders) on the flowers of the shrub Rubus rosifolius (Rosaceae) in a 2 × 2 factorial randomized block design. We found that asymmetry and predators decreased pollinator visitation (mainly hymenopterans), and overall these factors did not interact (additive effects). The effect of predation risk on pollinator avoidance behavior was 62 % higher than that of floral asymmetry. Furthermore, path analyses revealed that only predation risk cascaded down to plant fitness, and it significantly decreased fruit biomass by 33 % and seed number by 28 %. We also demonstrated that R. rosifolius fitness is indirectly affected by visiting and avoidance behaviors of pollinators. The strong avoidance behavioral response triggered by predation risk may be related to predator pressure upon flowers. Although floral asymmetry caused by herbivory can alter the quality of resources, it should not exert the same evolutionary pressure as that of predator–prey interactions. Our study highlights the importance of considering simultaneous forces, such as predation risk and floral asymmetry, as well as pollinator behavior when evaluating ecological processes involving mutualistic plant-pollinator systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott KR, Dukas R (2009) Honeybees consider flower danger in their waggle dance. Anim Behav 78:633–635

    Article  Google Scholar 

  • Althoff DM, Segraves KA, Pellmyr O (2005) Community context of an obligate mutualism: pollinator and florivore effects on Yucca wlamentosa. Ecology 86:905–913

    Article  Google Scholar 

  • Antiqueira PAP (2012) Efeitos indiretos de predadores e de herbívoros florais e foliares no comportamento de visitantes florais e sucesso reprodutivo de Rubus rosifolius. 96 f. Dissertação (mestrado), Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas. http://hdl.handle.net/11449/87627

  • Ashman TL, Knight TM, Steets JA, Amarasekare P et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85(9):2408–2421

    Article  Google Scholar 

  • Barton K (2015) MuMIn: multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn

  • Boeing WJ (2010) Defensive avoidance. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior, vol 1. Academic Press, Oxford, pp 476–480

    Chapter  Google Scholar 

  • Botto-Mahan C, Ramírez PA, Ossa CG, Medel R, Ojeda-Camacho M, González AV (2011) Floral herbivory affects female reproductive success and pollinator visitation in the perennial herb Alstroemerialigtu (Alstroemeriaceae). Int J Plant Sci 172(9):1130–1136

    Article  Google Scholar 

  • Brechbühl R, Casas J, Bacher S (2010) Ineffective crypsis in a crab spider: a prey community perspective. Proc R Soc B 277:739–746

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York

  • Card GM (2012) Escape behaviors in insects. Curr Opin Neurobiol 22:180–186

    Article  CAS  PubMed  Google Scholar 

  • Card G, Dickinson MH (2008) Visually mediated motor planning in the escape response of Drosophila. Curr Biol 18:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Cardel YJ, Koptur S (2010) Effects of florivory on the pollination of flowers: an experimental field study with a perennial plant. Int J Plant Sci 171:283–292

    Article  Google Scholar 

  • CariveauD, Irwin RE, Brody AK, Garcia-Mayeya LS, Von der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15–26

  • Dewell RB, Gabbiani F (2012) Escape behavior: linking neural computation to action. Curr Biol 22(5):R152

    Article  CAS  PubMed  Google Scholar 

  • Dukas R, Morse DH (2003) Crab spiders affect flower visitation by bees. Oikos 101:157–163

    Article  Google Scholar 

  • Dukas R, Morse DH (2005) Crab spiders show mixed effects on flower-visiting bees and no effect on plant fitness components. Ecoscience 12:244–247

    Article  Google Scholar 

  • Foelix RF (2010) Biology of spiders, 3rd edn. Oxford University Press, USA

  • Galen C (1999) Why do flowers vary? Bioscience 49(8):631–640

    Article  Google Scholar 

  • Giurfa M, Dafni A, Neal PR (1999) Floral symmetry and its role in plant-pollinator systems. Int J Plant Sci 160(6 Suppl):S41–S50

    Article  PubMed  Google Scholar 

  • GiurfaM, Eichmann B, Menzel B (1996) Symmetry perception in an insect. Nature 382:458–461

  • Gonçalves-Souza T, Omena PM, Souza JC, Romero GQ (2008) Trait mediated effects on flowers: artificial spiders deceive pollinators and decrease plant fitness. Ecology 89:2407–2413

    Article  PubMed  Google Scholar 

  • Ings TC, Chittka L (2009) Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences. Proc R Soc Lond B 276:2031–2036

    Article  Google Scholar 

  • Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L et al (2009) Ecological networks—beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, USA

  • Karban R, Strauss SY (1993) Effects of insect herbivores on the growth and reproduction of their long-lived host plant, Erigeronglaucus. Ecology 74:39–46

    Article  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M et al (2005a) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005b) Trophic cascades across ecosystems. Nature 437:880–883

    Article  CAS  PubMed  Google Scholar 

  • Krupnick GA, Weis AE, Campbell DR (1999) The consequences of floral herbivory for pollinator service to Isomerisarborea. Ecology 80:125–134

    Article  Google Scholar 

  • Kvalseth TO (1985) Cautionary note about R 2. Am Stat 39:279–285

    Google Scholar 

  • Lloyd DG, Barrett SCH (2006) Floral biology: studies on floral evolution in animal-pollinatedplants. Chapman and Hall, New York

  • Louda SM (1983) Seed predation and seedling mortality in the recruitment of a shrub, Haplopappusvenetus (Asteraceae), along a climatic gradient. Ecology 64:511–521

    Article  Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc Lond B Biol Sci 273:2575–2584

  • Marquis RJ (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226:537–539

    Article  CAS  PubMed  Google Scholar 

  • McCall AC (2008) Florivory affects pollinator visitation and female fitness in Nemophilamenziesii. Oecologia 155:729–737

    Article  PubMed  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365

    Article  PubMed  Google Scholar 

  • Møller AP (1995) Bumblebee preference for symmetrical flowers. Proc Natl Acad Sci USA 92:2288–2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Morse DH (2007) Predator upon a flower: life history and fitness in a crab spider. Harvard University Press, Cambridge

    Google Scholar 

  • Mothershead K, Marquis RJ (2000) Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in Oenotheramacrocarpa. Ecology 81:30–40

    Google Scholar 

  • Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36:81–105

    Article  Google Scholar 

  • Ohgushi T, Craig TP, Price PW (2007) Ecological communities: plant mediation in indirect interaction webs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Patiño J, Guilhaumon F, Whittaker RJ, Triantis KA, Gradstein SR, Hedenäs L, González-Mancebo JM, Vanderpoorten A (2013) Accounting for data heterogeneity in patterns of biodiversity: an application of linear mixed effect models to the oceanic island biogeography of spore-producing plants. Ecography 36:904–913

    Article  Google Scholar 

  • Piggott JJ, Townsend CR, Matthaei CD (2015) Reconceptualizing synergism and antagonism among multiple stressors. Ecol Evol 5:1538–1547

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinheiro JC and Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effects models. R package version 3.1–122. http://CRAN.R-project.org/package=nlme

  • Preisser EL, Bolnick DI, Benarda MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509. doi:10.1890/04-0719

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.Rproject.org/

  • Robertson IC, Maguire DK (2005) Crab spiders deter insect visitations to slickspot peppergrass flowers. Oikos 109:577–582

    Article  Google Scholar 

  • Romero GQ, Koricheva J (2011) Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. J Anim Ecol 80:696–704

    Article  PubMed  Google Scholar 

  • Romero GQ, Vasconcellos-Neto J (2004) Beneficial effects of flower-dwelling predators on their host plant. Ecology 85:446–457

    Article  Google Scholar 

  • Romero GQ, Antiqueira PAP, Koricheva J (2011) A meta-analysis of predation risk effects on pollinator behaviour. PLoS One 6(6):e20689. doi:10.1371/journal.pone.0020689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro E, Machado DL (1992) Elementos geológicos da Serra do Japi (Geological elements of Serra do Japi). In: Morelatto LPC (ed) História natural da Serra do Japi. UNICAMP, Campinas, pp 24–29

  • Santos AMC, Carneiro FM, Cianciaruso MV (2015) Predicting productivity in tropical reservoirs: the roles of phytoplankton taxonomic and functional diversity. Ecol Ind 48:428–435

    Article  Google Scholar 

  • Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28(5)

  • Schmitz OJ (1998) Direct and indirect effects of predation and predation risk in old-field interaction webs. Am Nat 151:327–342

    Article  CAS  PubMed  Google Scholar 

  • Sendoya SF, Freitas AVL, Oliveira PS (2009) Egg-laying butterflies distinguish predaceous ants by sight. Am Nat 174:34–140

    Article  Google Scholar 

  • Sõber V, Moora M, Teder T (2010) Florivores decrease pollinator visitation in a self-incompatible plant. Basic Appl Ecol 11:669–675

    Article  Google Scholar 

  • Srinivasan MV, Zhang S (2004) Visual motor computations in insects. Annu Rev Neurosci 27:679–696

    Article  CAS  PubMed  Google Scholar 

  • Stocks R, McPeek MA, Mitchell JL (2003) Evolution of prey behaviour in response to changes in predatory regime: damselflies in fish and dragonfly lakes. Evolution 57:574–585

    Article  Google Scholar 

  • Strauss SY (1997) Floral characters link herbivores, pollinators, and plant fitness. Ecology 78(6):1640–1645

    Article  Google Scholar 

  • Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barret SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford

  • Suttle KB (2003) Pollinators as mediators of top-down effects on plants. Ecol Lett 6:688–694

    Article  Google Scholar 

  • Wang MY, Ings TC, Proulx MJ, Chittka L (2013) Can bees simultaneously engage in adaptive foraging behaviour and attend to cryptic predators? Anim Behav 86–859:866

    Google Scholar 

  • Weiss MR (2004) Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge, pp 171–190

  • Wignall AE, Helling AM, Cheng K, Herberstein ME (2006) Flower symmetry preferences in honeybees and their crab spider predators. Ethology 112:510–518

    Article  Google Scholar 

  • Wise MJ, Cummins JJ (2002) Nonfruiting hermaphroditic flowers as reserve ovaries in Solanumcarolinense. Am Midl Nat J 148:236–245

    Article  Google Scholar 

  • Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466

    Article  Google Scholar 

  • Yokoi T, Fujisaki K (2009) Hesitation behaviour of hoverflies Sphaerophoria spp. to avoid ambush by crab spiders. Naturwissenschaften 96:195–200

    Article  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R, 1st edn, XXII. Springer, New York

Download references

Acknowledgments

We would like to thank Yuri Campanholo Gradinete and Prof. Dr André Victor Lucci Freitas for providing identifications of Hymenoptera and Lepidoptera, respectively; Dr Jennifer Thaler and an anonymous reviewer for their comments; Adriano Mendonça for providing help during fieldwork; and Prof. Dr Fernando Rodrigues da Silva for providing help with statistical analyses. We would also like to thank the City Hall of Jundiaí and staff of the Biological Reserve of Serra do Japi, Jundiaí. P. A. P. Antiqueira received a master’s degree scholarship from the Fundação de Amparo à Pesquisa do Estado de São Paulo(FAPESP; proc. no. 2009/11874-6). G. Q. Romero received a productivity grant from the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The present study was funded by FAPESP.

Author contribution statement

P. A. P. A. and G. Q. R. conceived and designed the experiments, analyzed the data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Quevedo Romero.

Additional information

Communicated by Carlos L. Ballare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antiqueira, P.A.P., Romero, G.Q. Floral asymmetry and predation risk modify pollinator behavior, but only predation risk decreases plant fitness. Oecologia 181, 475–485 (2016). https://doi.org/10.1007/s00442-016-3564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3564-y

Keywords

Navigation