Skip to main content

Advertisement

Log in

Infection dynamics in frog populations with different histories of decline caused by a deadly disease

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Pathogens can drive host population dynamics. Chytridiomycosis is a fungal disease of amphibians that is caused by the fungus Batrachochytrium dendrobatidis (Bd). This pathogen has caused declines and extinctions in some host species whereas other host species coexist with Bd without suffering declines. In the early 1990s, Bd extirpated populations of the endangered common mistfrog, Litoria rheocola, at high-elevation sites, while populations of the species persisted at low-elevation sites. Today, populations have reappeared at many high-elevation sites where they presently co-exist with the fungus. We conducted a capture–mark–recapture (CMR) study of six populations of L. rheocola over 1 year, at high and low elevations. We used multistate CMR models to determine which factors (Bd infection status, site type, and season) influenced rates of frog survival, recapture, infection, and recovery from infection. We observed Bd-induced mortality of individual frogs, but did not find any significant effect of Bd infection on the survival rate of L. rheocola at the population level. Survival and recapture rates depended on site type and season. Infection rate was highest in winter when temperatures were favourable for pathogen growth, and differed among site types. The recovery rate was high (75.7–85.8 %) across seasons, and did not differ among site types. The coexistence of L. rheocola with Bd suggests that (1) frog populations are becoming resistant to the fungus, (2) Bd may have evolved lower virulence, or (3) current environmental conditions may be inhibiting outbreaks of the fatal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albon SD, Stien A, Irvine RF, Langvatn R, Ropstad E, Halvorsen E (2002) The role of parasites in the dynamics of a reindeer population. Proc R Soc Lond B 269:1625–1632. doi:10.1098/rspb.2002.2064

    Article  CAS  Google Scholar 

  • Alford RA (2010) Declines and the global status of amphibians. In: Sparling D, Linder G, Bishop CA, Krest SK (eds) Ecotoxicology of amphibians and reptiles, 2nd edn. SETAC, Pensacola, pp 13–45

    Chapter  Google Scholar 

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part 1. Nature 280:361–367

    Article  CAS  PubMed  Google Scholar 

  • Begon M, Bennet M, Bowers RG, French NP, Hazel SM, Turner J (2002) A clarification of transmission terms in host–microparasite models: numbers, densities and areas. Epidemiol Infect 129:147–153. doi:10.1017/S0950268802007148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell SC (2012) The role of cutaneous bacteria in resistance of Australian tropical rainforest frogs to the amphibian chytrid fungus Batrachochytrium dendrobatidis. PhD thesis, James Cook University, Townsville

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148

    Article  CAS  PubMed  Google Scholar 

  • Brem FM, Lips KR (2008) Batrachochytrium dendrobatidis infection patterns among Panamanian amphibian species, habitats and elevations during epizootic and enzootic. Dis Aquat Organ 81:189–202. doi:10.3354/dao01960

    Article  PubMed  Google Scholar 

  • Briggs CJ, Vredenburg VT, Knapp RA, Rachowicz LJ (2005) Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology 86:3149–3159

    Article  Google Scholar 

  • Brittain JE, Eikeland TJ (1988) Invertebrate drift—a review. Hydrobiologia 166:77–93

    Article  Google Scholar 

  • Brunner JL, Schock DM, Davidson EW, Collins JP (2004) Intraspecific reservoirs: complex life history and the persistence of a lethal ranavirus. Ecology 85:560–566

    Article  Google Scholar 

  • Bureau of Meteorology (2012) Climate and past weather. Australian government. http://www.bom.gov.au. Accessed Nov 2012

  • Burnham KP, Anderson DR (1984) Tests of compensatory vs. additive hypotheses of mortality in mallards. Ecology 65:105–112

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caley P, McElrea LM, Hone J (2002) Mortality rates of feral ferrets (Mustela furo) in New Zealand. Wildl Res 29:323–328. doi:10.1071/WR02004

    Article  Google Scholar 

  • Chambert T, Staszewski V, Lobato E, Choquet R, Carrie C, McCoy KD, Tveraa T, Boulinier T (2012) Exposure of black-legged kittiwakes to Lyme disease spirochetes: dynamics of the immune status of adult hosts and effects on their survival. J Evol Biol 81:986–995. doi:10.1111/j.1365-2656.2012.01979.x

    Google Scholar 

  • Conlon JM, Reinert LK, Mechkarska M, Prajeep M, Meetani MA, Coquet L, Jouenne T, Hayes MP, Padgett-Flohr G, Rollins-Smith LA (2013) Evaluation of the skin peptide defenses of the Oregon spotted frog Rana pretiosa against infection by the chytrid fungus Batrachochytrium dendrobatidis. J Chem Ecol 39:797–805. doi:10.1007/s10886-013-0294-z

    Article  CAS  PubMed  Google Scholar 

  • Conn PB, Cooch EG (2008) Multistate capture–recapture analysis under imperfect state observation: an application to disease models. J Appl Ecol 46:486–492. doi:10.1111/j.1365-2664.2008.01597.x

    Article  Google Scholar 

  • Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748. doi:10.3201/eid0506.990601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150. doi:10.1046/j.1472-4642.2003.00016.x

    Article  Google Scholar 

  • De Castro F, Bolker B (2005) Mechanisms of disease-induced extinction. Ecol Lett 8:117–126. doi:10.1111/j.1461-0248.2004.00693.x

    Article  Google Scholar 

  • Dennis AJ (2012) Common mistfrog, Litoria rheocola. In: Curtis LK, Dennis AJ, McDonald KR, Kyne PM, Debus SJS (eds) Queensland’s threatened animals. CSIRO, Australia, pp 166–167

    Google Scholar 

  • Department of Environment and Heritage (2006) Threat abatement plan: infection of amphibians with chytrid fungus resulting in chytridiomycosis. Commonwealth of Australia, Canberra. http://www.environment.gov.au/biodiversity/threatened/publications/tap/chytrid.html. Accessed June 2010

  • Ebert D, Hamilton WD (1996) Sex against virulence: the coevolution of parasitic diseases. Trends Ecol Evol 11:79–82. doi:10.1016/0169-5347(96)81047-0

    Article  CAS  PubMed  Google Scholar 

  • Faustino CR, Jennelle CS, Connolly V, Davis AK, Swarthout EC, Dhondt AA, Cooch EG (2004) Mycoplasma gallisepticum infection dynamics in a house finch population: seasonal variation in survival, encounter and transmission rate. J Anim Ecol 73:651–669. doi:10.1111/j.0021-8790.2004.00840.x

    Article  Google Scholar 

  • Hoskin C, Hero JM (2008) Rainforest frogs of the wet tropics, North-east Australia. Griffith University, Gold Coast

    Google Scholar 

  • Hyatt A, Boyle D, Olsen V, Boyle D, Berger L, Obendorf D, Dalton A, Kriger K, Hero M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Colling A (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Org 73:175–192. doi:10.3354/dao073175

    Article  CAS  PubMed  Google Scholar 

  • International Union for Conservation of Nature (2012) IUCN red list of threatened species. Version 2011.2. http://www.iucnredlist.org. Accessed May 2012

  • Johnson M, Berger L, Philips L, Speare R (2003) Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ 57:255–260. doi:10.3354/dao057255

    Article  CAS  PubMed  Google Scholar 

  • Jolles AE, Etienne RS, Olff H (2006) Independent and competing disease risks: implications for host populations in variable environments. Am Nat 167:745–757. doi:10.1086/503055

    Article  PubMed  Google Scholar 

  • Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol 25:109–118. doi:10.1016/j.tree.2009.07.011

    Article  PubMed  Google Scholar 

  • Kinney VC, Heemeyer JL, Pessier AP, Lannoo MJ (2011) Seasonal pattern of Batrachochytrium dendrobatidis infection and mortality in Lithobates areolatus: affirmation of Vredenburg’s “10,000 zoospore rule”. PLoS ONE 6:e16708. doi:10.1371/journal.pone.0016708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kistner EJ, Belovsky GE (2014) Host dynamics determine responses to disease: additive versus compensatory mortality in a grasshopper–pathogen system. Ecology 95:2579–2588

    Article  Google Scholar 

  • Kriger KM, Hero JM (2006) Survivorship in wild frogs infected with chytridiomycosis. EcoHealth 3:171–177. doi:10.1007/s10393-006-0027-7

    Article  Google Scholar 

  • Krkosek M, Connors BM, Ford H, Peacock S, Mages P, Ford JS, Morton A, Volpe JP, Hilborn R, Dill LM, Lewis MA (2011) Fish farms, parasites, and predators: implications for salmon population dynamics. Ecol Appl 21:897–914

    Article  PubMed  Google Scholar 

  • Lachish S, Jones M, McCallum H (2007) The impact of disease on survival and population growth rate of the Tasmanian devil. J Anim Ecol 76:926–936. doi:10.1111/j.1365-2656.2007.01272.x

    Article  PubMed  Google Scholar 

  • Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon BC (2011a) Fitness effects of endemic malaria infections in a wild bird population: the importance of ecological structure. J Anim Ecol 80:1196–1206. doi:10.1111/j.1365-2656.2011.01836.x

    Article  PubMed  Google Scholar 

  • Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon BC (2011b) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J Anim Ecol 80:1207–1216. doi:10.1111/j.1365-2656.2011.01893.x

    Article  PubMed  Google Scholar 

  • Lebreton JD (2005) Dynamical and statistical models for exploited populations. Aust NZ J Stat 47:49–63. doi:10.1111/j.1467-842X.2005.00371.x

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170. doi:10.1073/pnas.0506889103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytridum dendrobatitis gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Longo AV, Burrowes PA (2010) Persistence with chytridiomycosis does not assure survival of direct-developing frogs. EcoHealth 7:185–195. doi:10.1007/s10393-010-0327-9

    Article  PubMed  Google Scholar 

  • McCallum H, Dobson A (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol Evol 10:190–194. doi:10.1016/S0169-5347(00)89050-3

    Article  CAS  PubMed  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300. doi:10.1016/S0196-5347(01)02144-9

    Article  PubMed  Google Scholar 

  • McDonald KR, Alford RA (1999) A review of declining frogs in northern Queensland. In: Campbell A (ed) Declines and disappearances of Australian frogs. Environment Australia, Canberra, pp 14–22

    Google Scholar 

  • McDonald KR, Mendez D, Muller R, Freeman AB, Speare R (2005) Decline in the prevalence of chytridiomycosis in frog populations in north Queensland, Australia. Pac Conserv Biol 11:114–120

    Google Scholar 

  • Murray KA, Skerratt LF, Speare R, McCallum H (2009) Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conserv Biol 23:1242–1252. doi:10.1111/j.1523-1739.2009.01211.x

    Article  PubMed  Google Scholar 

  • Newell DA, Goldingay RL, Brooks LO (2013) Population recovery following decline in an endangered stream-breeding frog (Mixophyes fleayi) from subtropical Australia. PLoS ONE 8:e58559. doi:10.1371/journal.pone.0058559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nokes DJ (1992) Microparasites: viruses and bacteria. In: Crawley E (ed) Natural enemies-the population biology of predators, parasites and diseases. Blackwell, Oxford, pp 349–374

    Google Scholar 

  • North S, Alford RA (2008) Infection intensity and sampling locality effect Batrachochytrium dendrobatidis distribution among body regions on green-eyed tree frogs Litoria genimaculata. Dis Aquat Organ 81:177–188. doi:10.3354/dao01958

    Article  PubMed  Google Scholar 

  • Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, The Bd Mapping Group, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802. doi:10.1371/journal.pone.0056802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips BL, Puschendorf R (2013) Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America. Proc R Soc Lond B 280:1–8. doi:10.1098/rspb.2013.1290

    Article  Google Scholar 

  • Phillott AD, Grogan LF, Cashins SD, McDonald KR, Berger L, Skerratt LF (2013) Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis. Conserv Biol 27:1058–1068. doi:10.1111/cobi.12073

    Article  PubMed  Google Scholar 

  • Pilliod DS, Muths E, Scherer RD, Bartelt PE, Corn PS, Hossack BR, Lambert BA, McCaffery R, Gaughan C (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267. doi:10.1111/j.1523-1739.2010.01506.x

    Article  PubMed  Google Scholar 

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    Article  PubMed  Google Scholar 

  • Potapov A, Merrill E, Lewis MA (2012) Wildlife disease elimination and density dependence. Proc R Soc Lond B 279:3139–3145. doi:10.1098/rspb.2012.0520

    Article  Google Scholar 

  • Pullen KD, Best AM, Ware JL (2010) Amphibian pathogen Batrachochytrium dendrobatidis prevalence is correlated with season and not urbanization in central Virginia. Dis Aquat Organ 91:9–16. doi:10.3354/dao02249

    Article  PubMed  Google Scholar 

  • Puschendorf R, Carnaval AC, VanDerWal J, Zumbado-Ulate H, Chaves G, Bolaños F, Alford RA (2009) Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Divers Distrib 15:401–408. doi:10.1111/j.1472-4642.2008.00548.x

    Article  Google Scholar 

  • Puschendorf R, Hoskin CJ, Cashins SD, McDonald KR, Skerratt LF, Vanderwal J, Alford RA (2011) Environmental refuge from disease-driven amphibian extinction. Conserv Biol 25:956–964. doi:10.1111/j.1523-1739.2011.01728.x

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Knapp RA, Morgan JAT, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683

    Article  PubMed  Google Scholar 

  • Retallick RWR (2002) Using experimental translocations to learn about declines in Queensland’s frog populations—implementation of Queensland’s threatened frog recovery plans—experimental ecology. Natural Heritage Trust, Albany, pp 1–74

    Google Scholar 

  • Retallick RWR, McCallum H, Speare R (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol 2:1965–1971. doi:10.1371/journal.pbio.0020351

    Article  CAS  Google Scholar 

  • Richards SJ, McDonald KR, Alford RA (1993) Declines in populations of Australia’s endemic tropical forest frogs. Pac Conser Biol 1:66–77

    Google Scholar 

  • Rodder D, Veith M, Lotters S (2008) Environmental gradients explaining the prevalence and intensity of infection with the amphibian chytrid fungus: the host’s perspective. Anim Conserv 11:513–517. doi:10.1111/j.1469-1795.2008.00210.x

    Article  Google Scholar 

  • Rodriguez-Contreras A, Senaris JC, Lampo M, Rivero R (2008) Rediscovery of Atelopus cruciger (Anura: Bufonidae): current status in the Cordillera de La Costa, Venezuela. Oryx 42:301–304. doi:10.1017/S0030605308000082

    Article  Google Scholar 

  • Rowley JJL, Alford RA (2007) Behaviour of Australian rainforest stream frogs may affect the transmission of chytridiomycosis. Dis Aquat Organ 77:1–9. doi:10.3354/dao01830

    Article  PubMed  Google Scholar 

  • Rowley JJL, Alford RA (2013) Hot bodies protect amphibians against chytrid infection in nature. Sci Rep 3:1515. doi:10.1038/srep01515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roznik EA, Alford RA (2015) Seasonal ecology and behavior of an endangered rainforest frog (Litoria rheocola) threatened by disease. PLoS ONE 10:e0127851. doi:10.1371/journal.pone.0127851

    Article  PubMed Central  PubMed  Google Scholar 

  • Roznik EA, Sapsford SJ, Pike DA, Schwarzkopf L, Alford RA (2015) Natural disturbance reduces disease risk in endangered rainforest frog populations. Sci Rep

  • Sapsford SJ (2012) Population and disease dynamics of the amphibian chytrid fungus in the stream-associated frog Litoria rheocola. MSc thesis, James Cook University, Townsville

  • Sapsford SJ, Alford RA, Schwarzkopf L (2013) Elevation, temperature, and aquatic connectivity all influence the infection dynamics of the amphibian chytrid fungus in adult frogs. PLoS ONE 8:e82425. doi:10.1371/journal.pone.0082425

    Article  PubMed Central  PubMed  Google Scholar 

  • Sapsford SJ, Roznik EA, Alford RA, Schwarzkopf L (2014) Visible implant elastomer marking does not affect short-term movements or survival rates of the treefrog Litoria rheocola. Herpetologica 70:23–33. doi:10.1655/HERPETOLOGICA-D-13-0004

    Article  Google Scholar 

  • Sapsford SJ, Alford RA, Schwarzkopf L (2015) Visible implant elastomer as a viable marking technique for common mistfrogs (Litoria rheocola). Herpetologica 71:96–101. doi:10.1655/HERPETOLOGICA-D-13-00089

    Article  Google Scholar 

  • Savage AE, Sredl MJ, Zamudio KR (2011) Disease dynamics vary spatially and temporally in a North American amphibian. Biol Conserv 144:1910–1915. doi:10.1016/j.biocon.2011.03.018

    Article  Google Scholar 

  • Schmidt K, Schwarzkopf L (2010) Visible implant elastomer tagging and toe-clipping: effects of marking on locomotor performance of frogs and skinks. Herpetol J 20:99–105

    Google Scholar 

  • Schwarzkopf L, Alford RA (2002) Nomadic movement in tropical toads. Oikos 96:492–506. doi:10.1034/j.1600-0706.2002.960311.x

    Article  Google Scholar 

  • Skerratt LF, Berger L, Hines HB, McDonald KR, Mendez D, Speare R (2008) Survey protocol for detecting chytridiomycosis in all Australian frog populations. Dis Aquat Organ 80:85–94. doi:10.3354/dao01923

    Article  PubMed  Google Scholar 

  • Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357. doi:10.1111/j.1523-1739.2006.00524.x

    Article  PubMed  Google Scholar 

  • Stevenson LA, Alford RA, Bell SC, Roznik EA, Berger L, Pike DA (2013) Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytridum dendrobatidis. PLoS ONE 8:e73830. doi:10.1371/journal.pone.0073830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevenson LA, Roznik EA, Alford RA, Pike DA (2014) Host-specific thermal profiles affect fitness of a widespread pathogen. Ecol Evol. doi:10.1002/ece3.1271

    PubMed Central  PubMed  Google Scholar 

  • Terrell VCK, Engbrecht NJ, Pessier AP, Lannoo MJ (2014) Drought reduces chytrid fungus (Batrachochytrium dendrobatidis) infection intensity and mortality but not prevalence in adult crawfish frogs (Lithobates areolatus). J Wildl Dis 50:56–62

    Article  PubMed  Google Scholar 

  • Tobler U, Borgula A, Schmidt BR (2012) Populations of a susceptible amphibian species can grow despite the presence of a pathogenic chytrid fungus. PLoS ONE 7:e34667. doi:10.1371/journal.pone.0034667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tompkins DM, Begon M (1999) Parasites can regulate wildlife populations. Parasitol Today 15:311–313

    Article  CAS  PubMed  Google Scholar 

  • Tompkins DM, Dobson AP, Arneberg P, Begon ME, Cattadori IM, Greenman JV, Heesterbeek JAP, Hudson PJ, Newborn D, Pugliese A, Rizzoli AP, Rosa R, Rosso F, Wilson K (2002) Parasites and host population dynamics. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, New York, pp 45–62

    Google Scholar 

  • Voordouw MJ, Adama D, Houston B, Govindarajulu P, Robinson J (2010) Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens. BMC Ecol 10:1–10. doi:10.1186/1472-6785-10-6

    Article  Google Scholar 

  • Voordouw MJ, Lachish S, Dolan MC (2015) The Lyme disease pathogen has no effect on the survival of its rodent reservoir host. PLoS ONE 10:e0118265. doi:10.1371/journal.pone.0118265

    Article  PubMed Central  PubMed  Google Scholar 

  • Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585. doi:10.1126/science.1176765

    Article  CAS  PubMed  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139. doi:10.1080/00063659909477239

    Article  Google Scholar 

  • Whitfield SM, Gentry LR, Kerby J, Donnelly MA (2012) Temporal variation in infection prevalence by the amphibian chytrid fungus in three species of frogs at La Selva, Costa Rica. Biotropica 44:779–784. doi:10.1111/j.1744-7429.2012.00872.x

    Article  Google Scholar 

  • Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv Biol 19:1449–1459. doi:10.1111/j.1523-1739.2005.004403.x

    Article  Google Scholar 

  • Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Dis Aquat Organ 55:65–67. doi:10.3354/dao055065

    Article  PubMed  Google Scholar 

  • Woodhams DC, Rollins-Smith LA, Carey C, Reinert L, Tyler MJ, Alford RA (2006) Population trends associated with skin peptide defenses against chytridiomycosis in Australian frogs. Oecologia 146:531–540. doi:10.1007/s00442-005-0228-8

    Article  PubMed  Google Scholar 

  • Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN (2007) Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim Conserv 10:425–428. doi:10.1111/j.1469-1795.2007.00150.x

    Article  Google Scholar 

  • Woodhams DC, Kenyon N, Bell SC, Alford RA, Chen S, Billheimer D, Shyr Y, Rollins-Smith LA (2010) Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian green-eyed treefrogs, Litoria genimaculata. Divers Distrib 16:703–712. doi:10.1111/j.1472-4642.2010.00666.x

    Article  Google Scholar 

  • Wyatt KB, Campos PF, Gilbert MTP, Kolokotronis S, Hynes WH, DeSalle R, Daszak P, MacPhee RDE, Greenwood AD (2008) Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE 3:e3602. doi:10.1371/journal.pone.0003602

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Yasumiba, A. McNab, J. Daskin, S. McClounan, V. Udyawer, F. Ortlieb, T. Knavel, E. Roznik, L. Wilson, E. Sapsford, and C. Devor for volunteering their time to help with field work. Funding was provided by Powerlink Queensland, the Australian Research Council (DP0986537) and the James Cook University Graduate Research Scheme. The project was carried out under permit WITK03070508 issued by the Queensland Department of Environment and Resource Management.

Author contribution statement

SJS, RAA, and LS conceived and designed the methodology. SJS performed the fieldwork. SJS and MJV analysed the capture–mark–recapture data using multi-state models. SJS, MJV, RAA, and LS wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Sapsford.

Additional information

Communicated by Raoul Van Damme.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapsford, S.J., Voordouw, M.J., Alford, R.A. et al. Infection dynamics in frog populations with different histories of decline caused by a deadly disease. Oecologia 179, 1099–1110 (2015). https://doi.org/10.1007/s00442-015-3422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3422-3

Keywords

Navigation