Skip to main content

Advertisement

Log in

Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance 15N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537–1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance 15N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden DT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:311–315

    Article  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford

    Google Scholar 

  • Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529

    Article  Google Scholar 

  • Baltzer JL, Thomas SC (2010) A second dimension to the leaf economic spectrum predicts edaphic habitat association in a tropical forest. Plos One 5:e13163

    Article  PubMed Central  PubMed  Google Scholar 

  • Bautista F, Palacio-Aponte G, Quintana P, Zink JA (2011) Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135:308–321

    Article  Google Scholar 

  • Bejarano M, Crosby MM, Parra V, Etchevers JD, Campo J (2014a) Precipitation regime and nitrogen addition effects on leaf litter decomposition in tropical dry forests. Biotropica 46:415–424

    Article  Google Scholar 

  • Bejarano M, Etchevers JD, Ruíz-Suárez G, Campo J (2014b) The effects of increased N input on soil C and N dynamic in seasonally dry tropical forests: an experimental approach. Appl Soil Ecol 73:105–115

    Article  Google Scholar 

  • Campo J, Dirzo R (2003) Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatan, Mexico. J Trop Ecol 19:525–530

    Article  Google Scholar 

  • Campo J, Vázquez-Yanes C (2004) Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7:311–319

    Article  CAS  Google Scholar 

  • Campo J, Maass M, Jaramillo VJ, Martínez-Yrízar A, Sarukhán J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:161–179

    Article  CAS  Google Scholar 

  • Campo J, Hernández G, Gallardo JF (2014) Leaf and litter N and P in three forests with low P supply. Eur J For Res 133:121–129

    Article  CAS  Google Scholar 

  • Ceccon E, Olmsted I, Vázquez-Yanes C, Campo-Alves J (2002) Vegetation and soil properties in two tropical dry forests of differing regeneration status in Yucatan. Agrociencia 36:621–631

    Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  CAS  PubMed  Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs. ecological considerations. Biogeochemistry 46:233–246

    CAS  Google Scholar 

  • Cuevas RM, Hidalgo C, Payán F, Etchevers JD, Campo J (2013) Precipitation influences on active fractions of soil organic matter in karstic soils of Yucatan: regional and seasonal patterns. Eur J For Res 132:667–677

    Article  CAS  Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588

    Article  Google Scholar 

  • Curtis JT, McIntosh RP (1950) The integration of certain analytic and synthetic phytosociological characters. Ecology 31:434–455

    Article  Google Scholar 

  • Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodríguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20:GB4003

  • Dirzo R, Domínguez C (1995) Plant-herbivore interactions in Mesoamerican tropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 304–325

    Chapter  Google Scholar 

  • Eamus DL, Hutley B, O’Grady AP (2001) Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiol 21:977–988

    Article  CAS  PubMed  Google Scholar 

  • Freitas ADS, Sampaio EVSB, Santos CERS, Fernandes AR (2010) Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. J Arid Environ 74:344–349

    Article  Google Scholar 

  • García E (1998) Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695

    Article  Google Scholar 

  • Gei MG, Powers JS (2014) Nutrient cycling in tropical dry forests. In: Sánchez-Azofeifa A, Powers JS, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC, Boca Raton, pp 141–155

    Google Scholar 

  • Gei MG, Powers JS (2015) The influence of seasonality and species effects on surface fine roots and nodulation in tropical legume tree plantations. Plant Soil. doi:10.1007/s11104-014-2324-1

    Google Scholar 

  • Giraldo JP, Holbrook NM (2011) Physiological mechanisms underlying the seasonality of leaf senescence and renewal in seasonally dry tropical forests. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally dry tropical forests: ecology and conservation. Island Press, Washington, pp 129–140

    Chapter  Google Scholar 

  • Gotsch SG, Powers JS, Lerdau MT (2010) Leaf traits and water relations of 12 evergreen species in Costa Rican wet and dry forests: patterns of intra-specific variation across forests and seasons. Plant Ecol 211:133–146

    Article  Google Scholar 

  • Högberg P (1997) Tansley review no. 95–15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Holbrook NM, Whitbeck JL, Mooney HA (1995) Drought responses of neotropical dry forest trees. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 243–276

    Chapter  Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA (1971) Forest environments in tropical life zones. Pergamon, Oxford

    Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforest. Proc Natl Acad Sci USA 103:8745–8750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci USA 104:8902–8906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hulshof CM, Martínez-Yrízar A, Burquez A, Boyle B, Enquist BJ (2014) Plant functional trait variation in tropical dry forests: a review and synthesis. In: Sánchez-Azofeifa A, Powers JS, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC, Boca Raton, pp 129–140

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Laughlin DC (2011) Nitrification is linked to dominant leaf traits rather than functional diversity. J Ecol 99:1091–1099

    Article  Google Scholar 

  • Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets U, Ordoñez A, Reich PB, Santiago LS (2015) Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecol Biogeogr. doi:10.1111/geb.12296

    Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation—some principles illustration for the denitrification and nitrification processes. Plant Soil 62:413–430

    Article  CAS  Google Scholar 

  • Matson PA, Vitousek PM (1995) Nitrogen gas emissions in a tropical dry forest ecosystem. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 384–398

    Chapter  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JL, McKey D (eds) Advances in legumes systematics: the nitrogen factor. Kew Publishing, Richmond, pp 211–228

    Google Scholar 

  • Meir P, Pennington TB (2011) Climatic change and seasonally dry tropical forests. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally dry tropical forests: ecology and conservation. Island Press, Washington, pp 279–299

    Chapter  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeography 33:491–505

    Article  Google Scholar 

  • Miller AE, Bowman WD (2002) Variation in 15N natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia 130:609–616

    Article  Google Scholar 

  • Mooney HA, Ferrar PJ, Slatyer RO (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36:103–111

    Article  Google Scholar 

  • Nardoto GB, Ometto JPHB, Ehleringer JR, Higuchi N, da Cunha Bustamente MM, Martinelli LA (2008) Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystems 11:1234–1246

    Article  CAS  Google Scholar 

  • Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642

    Article  Google Scholar 

  • Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley AB, Wright IJ (2007) “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci USA 104:8891–8896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) Vegan 2.0-3. http://www.cran.r-project.org/web/packages/vegan/index.html

  • Orwin K, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083

    Article  Google Scholar 

  • Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economic spectrum. Science 340:741–744

    Article  CAS  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Powers JS, Tiffin P (2010) Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct Ecol 24:927–936

    Article  Google Scholar 

  • Pringle EG, Adams RI, Broadbent E, Busby PE, Donatti CI, Kurten EL, Renton K, Dirzo R (2011) Distinct leaf-trait syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica 43:299–308

    Article  Google Scholar 

  • Prior LD, Eamus D, Bowman DMJS (2003) Leaf attributes in the seasonally dry tropics: a comparison of four habitats in Northern Australia. Funct Ecol 17:504–515

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: a trait manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renteria LY, Jaramillo VJ (2011) Rainfall drives leaf traits and leaf nutrient reorpstion in a tropical dry forests in Mexico. Oecologia 165:201–211

    Article  PubMed  Google Scholar 

  • Roa-Fuentes LL, Campo J, Parra-Tabla V (2012) Plant biomass allocation across a precipitation gradient: an approach to seasonally dry tropical forest at Yucatán, Mexico. Ecosystems 15:1234–1244

    Article  Google Scholar 

  • Robertson GP, Coleman DC, Bledsoe CS, Sollins P (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York

    Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  PubMed  Google Scholar 

  • Santiago LS, Kitajama K, Wright SJ, Mulkey SS (2004) Coordinated changes in photosynthesis, water relations and leaf traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502

    Article  PubMed  Google Scholar 

  • Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442

    Article  CAS  PubMed  Google Scholar 

  • Shang C, Tiessen H (2003) Soil organic C sequestration and stabilization in karstic soils of Yucatan. Biogeochemistry 62:177–196

    Article  CAS  Google Scholar 

  • Shipley B, Vile D, Garnier E, Wright IJ, Poorter H (2005) Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct Ecol 19:602–615

    Article  Google Scholar 

  • Templer PH, Arthur MA, Lovett GM, Weathers KC (2007) Plant and soil natural abundance 15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 153:399–406

    Article  PubMed  Google Scholar 

  • Warton D, Duursma R, Falster D, Taskinen S (2011) Package smatr, version 3.2.3

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high-and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar J, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Wright SJ, Kitajam K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbel SP, Marks CO, Ruíz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank José Erales Villamil and Carlos Nah for access to study sites. We thank Rommel Mo Aldana and Nicolas Salinas for their help in the field, and Enrique Solís for his help in the laboratory. This study was supported by PAPIIT-UNAM, no. 220610 and CONACYT 154754 grants. We are grateful to three anonymous referees for valuable and constructive criticism on earlier drafts of this paper.

Conflict of interest

The authors declare no conflict of interest with the organizations that sponsored the research.

Ethical standard

The experiments presented in this manuscript comply with the current laws in Mexico, where the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Campo.

Additional information

Communicated by Gerardo Avalos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roa-Fuentes, L.L., Templer, P.H. & Campo, J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. Oecologia 179, 585–597 (2015). https://doi.org/10.1007/s00442-015-3354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3354-y

Keywords

Navigation