Skip to main content
Log in

Survival and local recruitment are driven by environmental carry-over effects from the wintering area in a migratory seabird

  • HIGHLIGHTED STUDENT RESEARCH
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We estimated annual apparent survival rates, as well as local recruitment rates in different age groups and for different breeding status in the common tern Sterna hirundo using mark–recapture analysis on a long-term individual-based dataset from a breeding colony in Germany. Strong inter-annual variability in survival rates became apparent, especially in prospectors. Local recruitment also varied strongly between years and age groups. To explain these fluctuations, we linked survival and recruitment estimates to several environmental covariates expected to be limiting during the wintering period and migration, including the global climate indices of North Atlantic Oscillation and Southern Oscillation, fish abundance indices, and marine primary productivity in the West African wintering area. Contrary to expectations, global indices did not seem to be linked strongly to vital rates. Results showed that primary productivity had the strongest effect on annual survival, especially in young and inexperienced individuals. Primary productivity in the wintering area was also strongly associated with the probability of recruitment in the following breeding season, indicating that conditions during winter can have carry-over effects on the life cycle of individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaaki F (eds) Second International Symposium Information Theory. Akademikai Kiadi, Budapest, pp 267–281

    Google Scholar 

  • Anderson DR, Burnham KP (1999) Understanding information criteria for selection among capture-recapture or ring recovery models. Bird Study 46:14–21

    Google Scholar 

  • Arístegui J, Barton ED, Álvarez-Salgado XA et al (2009) Ecosystem sub-regions in the Canary current upwelling. Prog Oceanogr 83:33–48

    Google Scholar 

  • Attrill MJ, Power M (2002) Climatic influence on a marine fish assemblage. Nature 417:275–278

    CAS  PubMed  Google Scholar 

  • Aubry LM, Koons DN, Monnat J-Y, Cam E (2009) Consequences of recruitment decisions and heterogeneity on age-specific breeding success in a long-lived seabird. Ecology 90:2491–2502. doi:10.1890/08-1475.1

    PubMed  Google Scholar 

  • Aubry LM, Cam E, Koons DN et al (2011) Drivers of age-specific survival in a long-lived seabird: contributions of observed and hidden sources of heterogeneity. J Anim Ecol 80:375–383. doi:10.1111/j.1365-2656.2010.01784.x

    PubMed  Google Scholar 

  • Bairlein F, Dierschke J, Dierschke V et al (2014) Flussseeschwalbe Sterna hirundo Common tern. Atlas des Vogelzugs. AULA, Wiebelsheim, p 664

    Google Scholar 

  • Ballance LT, Pitman RL, Reilly SB (1997) Seabird communitiy structure along a productivity gradient: importance of competition and energetic constraint. Ecology 78:1502–1518

    Google Scholar 

  • Ballance LT, Ainley DG, Ballard G, Barton K (2009) An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J Avian Biol 40:279–288

    Google Scholar 

  • Barbraud C, Weimerskirch H (2005) Environmental conditions and breeding experience affect costs of reproduction in blue petrels. Ecology 86:682–692

    Google Scholar 

  • Becker PH, Bradley J (2007) The role of intrinsic factors for the recruitment process in long-lived birds. J Ornithol 148:377–384

    Google Scholar 

  • Becker PH, Finck P (1985) The influence of weather and food situation on the breeding success of common terns (Sterna hirundo). J Ornithol 126:393–404

    Google Scholar 

  • Becker PH, Ludwigs J-D (2004) Sterna hirundo common tern. BWP 6:91–137

    Google Scholar 

  • Becker PH, Wendeln H (1997) A new application for transponders in population ecology of the Common tern. Condor 99:534–538

    Google Scholar 

  • Becker PH, Finck P, Anlauf A (1985) Rainfall preceding egg-laying—a factor of breeding success in Common terns (Sterna hirundo). Oecologia 65:431–436

    Google Scholar 

  • Becker PH, Dittmann T, Ludwigs J-D et al (2008a) Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird. Proc Natl Acad Sci USA 105:12349–12352. doi:10.1073/pnas.0804179105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker PH, Ezard THG, Ludwigs J-D et al (2008b) Population sex ratio shift from fledging to recruitment: consequences for demography in a philopatric seabird. Oikos 117:60–68

    Google Scholar 

  • Blokpoel H, Morris RD, Trull P (1982) Winter observations of common terns in Trinidad, Guyana and Suriname. Colon Waterbirds 5:144–147

    Google Scholar 

  • Blokpoel H, Morris RD, Tessier GD (1984) Field investigations of the biology of common terns wintering in Trinidad. J Field Ornithol 55:424–434

    Google Scholar 

  • Bogdanova MI, Daunt F, Newell M et al (2011) Seasonal interactions in the black-legged kittiwake, Rissa tridactyla: links between breeding performance and winter distribution. Proc R Soc Lond B 278:2412–2418. doi:10.1098/rspb.2010.2601

    Google Scholar 

  • Braby J, Braby SJ, Braby RJ, Altwegg R (2011) Immature survival and age at first breeding of Damara terns: conservation from a non-breeding perspective. Ardea 99:185–190

    Google Scholar 

  • Brenninkmeijer A, Stienen EWM, Klaassen M, Kersten M (2002) Feeding ecology of wintering terns in Guinea-Bissau. Ibis 114:602–613

    Google Scholar 

  • Breton AR, Diamond AW (2014) Annual survival of adult Atlantic puffins Fratercula arctica is positively correlated with Herring Clupea harengus availability. Ibis 156:35–47

    Google Scholar 

  • Breton AR, Diamond AW, Kress SW (2006) Encounter, survival and movement probabilities from an Atlantic puffin (Fratercula arctica) metapopulation. Ecol Monogr 76:133–149

    Google Scholar 

  • Brichetti P, Foscolo Foschi U, Buano G (2000) Does El Nifio affect survival rate of Mediterranean populations. Waterbirds 23:147–154

    Google Scholar 

  • Brownie C, Hines JE, Nichols JD et al (1993) Capture-recapture studies for multiple strata including non-markovian transitions. Biometrics 49:1173–1187

    Google Scholar 

  • Cam E, Link WA, Cooch EG et al (2002) Individual covariation in life-history traits: seeing the trees despite the forest. Am Nat 159:96–105

    PubMed  Google Scholar 

  • Catchpole EA, Freeman SN (2000) Factors influencing Soay sheep survival. J R Stat Soc C 49:453–472

    Google Scholar 

  • Cherel Y, Hobson Ka (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. doi:10.3354/meps329281

    CAS  Google Scholar 

  • Choquet R, Lebreton J-D, Gimenez O et al (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography (Cop) 32:1071–1074

    Google Scholar 

  • Cook ASCP, Dadam D, Mitchell I et al (2014) Indicators of seabird reproductive performance demonstrate the impact of commercial fisheries on seabird populations in the North Sea. Ecol Indic 38:1–11. doi:10.1016/j.ecolind.2013.10.027

    Google Scholar 

  • Coulson T, Catchpole Ea, Albon SD et al (2001) Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528–1531. doi:10.1126/science.292.5521.1528

    CAS  PubMed  Google Scholar 

  • Crespin L, Harris MP, Lebreton J-D et al (2006) Recruitment to a seabird population depends on environmental factors and on population size. J Anim Ecol 75:228–238

    PubMed  Google Scholar 

  • Crick HQP (2004) The impact of climate change on birds. Ibis 146:48–56

    Google Scholar 

  • Dänhardt A, Becker P (2011a) Herring and sprat abundance indices predict chick growth and reproductive performance of common terns breeding in the Wadden sea. Ecosystems 14:791–803

    Google Scholar 

  • Dänhardt A, Becker PH (2011b) Does small-scale vertical distribution of juvenile schooling fish affect prey availability to surface-feeding seabirds in the Wadden sea? J Sea Res 65:247–255

    Google Scholar 

  • Daunt F, Afanasyev V, Silk J, Wanless S (2006) Extrinsic and intrinsic determinants of winter foraging and breeding phenology in a temperate seabird. Behav Ecol Sociobiol 59:381–388

    Google Scholar 

  • Descamps S, Yoccoz NG, Gaillard J-M et al (2010) Detecting population heterogeneity in effects of North Atlantic Oscillations on seabird body condition: get into the rhythm. Oikos 119:1526–1536

    Google Scholar 

  • Dittmann T, Becker PH (2003) Sex, age, experience and condition as factors affecting arrival date in prospecting common terns, Sterna hirundo. Anim Behav 65:981–986

    Google Scholar 

  • Dunn EK (1973) Changes in fishing ability of terns associated with windspeed and sea surface conditions. Lett Nat 244:520–521. doi:10.1038/244520a0

    Google Scholar 

  • Dunn EK, Mead CJ (1982) Relationship between sardine fisheries and recovery rates of ringed terns in West Africa. Seabird Rep 6:98–104

    Google Scholar 

  • Emmerson L, Southwell C (2011) Adélie penguin survival: age structure, temporal variability and environmental influences. Oecologia 167:951–965

    PubMed  Google Scholar 

  • Ezard THG, Becker PH, Coulson T (2006) The contributions of age and sex to variation in common tern population growth rate. J Anim Ecol 75:1379–1386

    CAS  PubMed  Google Scholar 

  • Ezard THG, Becker PH, Coulson T (2007) Correlations between age, phenotype, and individual contribution to population growth in common terns. Ecology 88(10):2496–2504

    PubMed  Google Scholar 

  • FAO (2011) FAO fisheries and aquaculture report No. 975. Report of the FAO working group on the assessment of small pelagic fish off Northwest Africa, Rome, pp 1–276

  • Favero M, Becker PH (2006) Effects of the North Atlantic Oscillation and El Nino-Southern Oscillation on return rates, body mass and timing of migration of common terns Sterna hirundo breeding in Germany. In: Boere GC, Stroud DA, Galbraith CA (eds) Waterbirds around the world. Stationary Office, Edinburgh, pp 405–409

    Google Scholar 

  • Finney SK, Wanless S, Harris MP (1999) The effect of weather conditions on the feeding behaviour of a diving bird, the common guillemot Uria aalge. J Avian Biol 30:23–30

    Google Scholar 

  • Forchhammer MC, Post E, Stenseth NC (1998) Breeding phenology and climate. Nature 391:29–30

    CAS  Google Scholar 

  • Frank D (1992) The influence of feeding conditions on food provisioning of chicks in common terns Sterna hirundo nesting in the German Wadden sea. Ardea 80:45–55

    Google Scholar 

  • Fransson T, Österblom H, Hall-Karlsson S (2008) Swedish bird ringing atlas, vol 2. Naturhistoriska riksmuseet, Stockholm, p 216

    Google Scholar 

  • Frederiksen M, Lebreton J-D, Pradel R et al (2014) Identifying links between vital rates and environment: a toolbox for the applied ecologist. J Appl Ecol 51:71–81. doi:10.1111/1365-2664.12172

    Google Scholar 

  • Furness RW (2007) Responses of seabirds to depletion of food fish stocks. J Ornithol 148:247–252. doi:10.1007/s10336-007-0152-2

    Google Scholar 

  • González-Solís J, Felicísimo A, Fox J et al (2009) Influence of sea surface winds on shearwater migration detours. Mar Ecol Prog Ser 391:221–230. doi:10.3354/meps08128

    Google Scholar 

  • Grémillet D, Lewis S, Drapeau L et al (2008) Spatial match-mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J Appl Ecol 45:610–621. doi:10.1111/j.1365-2664.2007.01447.x

    Google Scholar 

  • Gröger JP, Kruse GH, Rohlf N (2010) Slave to the rhythm: how large-scale climate cycles trigger herring (Clupea harengus) regeneration in the North sea. ICES J Mar Sci 67:454–465. doi:10.1093/icesjms/fsp259

    Google Scholar 

  • Grosbois V, Thompson PM (2005) North Atlantic climate variation influences survival in adult fulmars. Oikos 109:273–290

    Google Scholar 

  • Hallett TB, Coulson T, Pilkington JG et al (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75

    CAS  PubMed  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    CAS  PubMed  Google Scholar 

  • Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79:231–244

    Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291:603–605. doi:10.1126/science.1058761

    CAS  PubMed  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr 134:1–35

    Google Scholar 

  • ICES (2013) ICES HAWG report 2013: report of the Herring Assessment Working Group for the Area South of 62 N (HAWG) 12–21 March 2013 ICES Headquarters, Copenhagen International Council for the Exploration of the Sea, Copenhagen, p 1270

  • Jaquemet S, Le Corre M, Quartly GD (2007) Ocean control of the breeding regime of the sooty tern in the southwest Indian Ocean. Deep Sea Res Part I 54:130–142. doi:10.1016/j.dsr.2006.10.003

    Google Scholar 

  • Jenouvrier S, Barbraud C, Weimerskirch H (2005) Long-term contasted responses to climate of two antarctic seabird species. Ecology 86:2889–2903. doi:10.1890/05-0514

    Google Scholar 

  • Jenouvrier S, Tavecchia G, Thibault J-C et al (2008) Recruitment processes in long-lived species with delayed maturity: estimating key demographic parameters. Oikos 117:620–628

    Google Scholar 

  • Jenouvrier S, Thibault J-C, Viallefont A et al (2009) Global climate patterns explain range-wide synchronicity in survival of a migratory seabird. Glob Change Biol 15:268–279

    Google Scholar 

  • Kalmbach E, Ramsay SC, Wendeln H, Becker PH (2001) A study of neotropic cormorants in central Chile: possible effects of El Nino. Waterbirds 24:345–351

    Google Scholar 

  • Klaassen RHG, Hake M, Strandberg R et al (2013) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol. doi:10.5061/dryad.ds388

    Google Scholar 

  • Kubetzki U, Garthe S, Fifield D et al (2009) Individual migratory schedules and wintering areas of northern gannets. Mar Ecol Prog Ser 391:257–265. doi:10.3354/meps08254

    Google Scholar 

  • Lebreton J-D, Pradel R (2002) Multistate recapture models: modelling incomplete individual histories. J Appl Stat 29:353–369

    Google Scholar 

  • Lecomte VJ, Sorci G, Cornet S et al (2010) Patterns of aging in the long-lived wandering albatross. Proc Natl Acad Sci USA 107:6370–6375. doi:10.1073/pnas.0911181107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leyrer J, Lok T, Brugge M et al (2013) Mortality within the annual cycle: seasonal survival patterns in Afro-Siberian Red Knots Calidris canutus canutus. J Ornithol 154:933–943. doi:10.1007/s10336-013-0959-y

    Google Scholar 

  • Limmer B, Becker PH (2007) The relative role of age and experience in determining variation in body mass during the early breeding career of the common tern (Sterna hirundo). Behav Ecol Sociobiol 61:1885–1896

    Google Scholar 

  • Limmer B, Becker PH (2009) Improvement in chick provisioning with parental experience in a seabird. Anim Behav 77:1095–1101

    Google Scholar 

  • Limmer B, Becker PH (2010) Improvement of reproductive performance with age and breeding experience depends on recruitment age in a long-lived seabird. Oikos 119:500–508

    Google Scholar 

  • Ludwigs J-D, Becker PH (2002) The hurdle of recruitment: influences of arrival date, colony experience and sex in the common tern Sterna hirundo. Ardea 90:389–399

    Google Scholar 

  • Ludwigs J-D, Becker PH (2007) Is divorce in young common terns, Sterna hirundo, after recruitment just a question of timing? Ethology 113:46–56

    Google Scholar 

  • Marra PP, Holmes RT (2001) Concequences of dominance-mediated habitat segregation in American redstarts during the nonbreeding season. Auk 118:92–104

    Google Scholar 

  • Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886

    CAS  PubMed  Google Scholar 

  • Mauco L, Favero M (2005) The food and feeding biology of common terns wintering conditions in Argentina: influence of environmental. J Waterbird Biol 28:450–457

    Google Scholar 

  • McGregor HV, Dima M, Fischer HW, Mulitza S (2007) Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315:637–639. doi:10.1126/science.1134839

    CAS  PubMed  Google Scholar 

  • Mead CJ (1978) Tern mortality in West Africa as shown by British and Dutch ringing results. Ibis 120:110

    Google Scholar 

  • Milner JM, Elston DA, Albon SD (1999) Estimating the contributions of population density and climatic fluctuations to interannual variation in survival of Soay sheep. J Anim Ecol 68:1235–1247

    Google Scholar 

  • Misund OA, Melle W, Fernö A (1997) Migration behaviour of Norwegian spring spawning herring when entering the cold front in the Norwegian sea. Sarsia 82:107–112

    Google Scholar 

  • Misund OA, Vilhjálmsson H, íJákupsstovu SH et al (1998) Distribution, migration and abundance of norwegian spring spawning herring in relation to the temperature and zooplankton biomass in the Norwegian sea as recorded by coordinated surveys in spring and summer 1996. Sarsia 83:117–127

    Google Scholar 

  • Møller AP, Flensted-Jensen E, Mardal W (2006) Dispersal and climate change: a case study of the Arctic tern Sterna paradisaea. Glob Change Biol 12:2005–2013

    Google Scholar 

  • Montevecchi WA (1993) Birds as indicators of change in marine prey stocks. In: Greenwood JJD, Furness RW (eds) Birds as monitors of environmental change. Springer, Netherlands, pp 217–266

    Google Scholar 

  • Monticelli D, Ramos JA, Quartly GD (2007) Effects of annual changes in primary productivity and ocean indices on the breeding performance of tropical roseate terns in the western Indian Ocean. Mar Ecol Prog Ser 351:273–286. doi:10.3354/meps07119

    Google Scholar 

  • Nevoux M, Weimerskirch H, Barbraud C (2007) Environmental variation and experience-related differences in the demography of the long-lived Black-browed albatross. J Anim Ecol 76:159–167

    PubMed  Google Scholar 

  • Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166

    Google Scholar 

  • Newton I (2007) Weather-related mass-mortality events in migrants. Ibis 149:453–467. doi:10.1111/j.1474-919X.2007.00704.x

    Google Scholar 

  • Nichols JD, Kendall WL (1995) The use of multi-state capture-recapture models to address questions in evolutionary ecology. J Appl Stat 22:835–846

    Google Scholar 

  • Nisbet ICT, Cam E (2002) Test for age-specificity in survival of the common tern. J Appl Stat 29:65–83

    Google Scholar 

  • Nisbet ICT, Apanius V, Friar MS (2002) Breeding performance of very old common terns. J Field Ornithol 73:117–124

    Google Scholar 

  • Norris DR, Taylor CM (2006) Predicting the consequences of carry-over effects for migratory populations. Biol Lett 2:148–151. doi:10.1098/rsbl.2005.0397

    PubMed Central  PubMed  Google Scholar 

  • Nur N, Sydeman WJ (1999) Survival, breeding probability and reproductive success in relation to population dynamics of Brandt’s cormorants Phalacrocorax penicillatus. Bird Study 46:S92–S103

    Google Scholar 

  • Oro D, Cam E, Martínez-Abraín A (2004) Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc R Soc Lond B 271:387–396

    Google Scholar 

  • Oro D, Torres R, Rodriguez C (2010) Climatic influence on demographic parameters of a tropical seabird varies with age and sex. Ecology 91:1205–1214

    PubMed  Google Scholar 

  • Ottersen G, Planque B, Belgrano A et al (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    Google Scholar 

  • Pardo D, Barbraud C, Authier M, Weimerskirch H (2013) Evidence for an age-dependent influence of environmental variations on a long-lived seabird’s life-history traits. Ecology 94:208–220

    PubMed  Google Scholar 

  • Péron C, Grémillet D (2013) Tracking through life stages: adult, immature and juvenile autumn migration in a long-lived seabird. PLoS ONE 8:e72713. doi:10.1371/journal.pone.0072713

    PubMed Central  PubMed  Google Scholar 

  • Pinaud D, Weimerskirch H (2007) At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. J Anim Ecol 76:9–19. doi:10.1111/j.1365-2656.2006.01186.x

    PubMed  Google Scholar 

  • Porter JM, Coulson JC (1987) Long-term changes in recruitment to the breeding group, and the quality of recruits at a Kittiwake Rissa tridactyla Colony. J Anim Ecol 56:675–689

    Google Scholar 

  • Pradel R (1993) Flexibility in survival analysis from recapture data: handling trap-dependence. In: Lebreton J-D, North PM (eds) Marked individuals in the study of bird population. Birkhäuser, Basel, pp 29–37

    Google Scholar 

  • Pradel R, Wintrebert CMA, Gimenez O (2003) A proposal for a goodness-of-fit test to the Arnason-Schwarz multisite capture-recapture model. Biometrics 59:43–53

    PubMed  Google Scholar 

  • Pradel R, Gimenez O, Lebreton JD (2005) Principles and interest of GOF tests for multistate capture-recapture models. Anim Biodivers Conserv 28:189–204

    Google Scholar 

  • Rebke M, Coulson T, Becker PH, Vaupel JW (2010) Reproductive improvement and senescence in a long-lived bird. Proc Natl Acad Sci USA 107:7841–7846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ristow D, Berthold P, Hashmi D, Querner U (2000) Satellite tracking of Cory’s shearwater migration. Condor 102:696–699

    Google Scholar 

  • Rolland V, Nevoux M, Barbraud C, Weimerskirch H (2009) Respective impact of climate and fisheries on the growth of an albatross population. Ecol Appl 19:1336–1346. doi:10.1890/08-1060.1

    CAS  PubMed  Google Scholar 

  • Roy C, Reason C (2001) ENSO related modulation of coastal upwelling in the eastern Atlantic. Prog Oceanogr 49:245–255. doi:10.1016/S0079-6611(01)00025-8

    Google Scholar 

  • Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653. doi:10.1890/0012-9658(2000)081[0642:ALHVAC]2.0.CO;2

    Google Scholar 

  • Saino N, Szép T, Ambrosini R et al (2004) Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proc R Soc Lond B 271:681–686. doi:10.1098/rspb.2003.2656

    Google Scholar 

  • Sandvik H, Erikstad KE, Barrett RT, Yoccoz NG (2005) The effect of climate on adult survival in five species of North Atlantic seabirds. J Anim Ecol 74:817–831

    Google Scholar 

  • Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666

    Google Scholar 

  • Schreiber EA (2001) Climate and weather effects on seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, Boca Raton, pp 179–215

    Google Scholar 

  • Sedinger JS, Jason LS, Ward DH et al (2011) Carryover effects associated with winter location affect fitness, social status, and population dynamics in a long-distance migrant. Am Nat 178:E110–E123

    PubMed  Google Scholar 

  • Sheehy J, Taylor CM, Norris DR (2011) The importance of stopover habitat for developing effective conservation strategies for migratory animals. J Ornithol 152:161–168. doi:10.1007/s10336-011-0682-5

    Google Scholar 

  • Sillett TS, Holmes RT (2002) Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308. doi:10.1046/j.1365-2656.2002.00599.x

    Google Scholar 

  • Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042. doi:10.1126/science.288.5473.2040

    CAS  PubMed  Google Scholar 

  • Skalski JR, Hoffmann A, Smith SG (1993) Testing the significance of individual- and cohort-level covariates in animal survival studies. In: Lebreton J-D, North PM (eds) Marked individuals in the study of bird population. Birkhäuser, Basel, pp 9–28

    Google Scholar 

  • Sorensen MC, Hipfner JM, Kyser TK, Norris DR (2009) Carry-over effects in a Pacific seabird: stable isotope evidence that pre-breeding diet quality influences reproductive success. J Anim Ecol 78:460–467. doi:10.1111/j.1365-2656.2008.01492.x

    PubMed  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G et al (2002) Ecological effects of climate fluctuations. Sci Compass 297:1292–1296

    CAS  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW et al (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B 270:2087–2096. doi:10.1098/rspb.2003.2415

    Google Scholar 

  • Südbeck P, Bauer H-G, Boschert M et al. (2007) Rote Liste der Brutvögel Deutschlands, Ber Vogelschutz, 4. Fassung, pp 1–61

  • Szostek KL, Becker PH (2012) Terns in trouble: demographic consequences of low breeding success and recruitment on a common tern population in the German Wadden sea. J Ornithol 153:313–326

    Google Scholar 

  • Szostek KL, Becker PH, Meyer BC et al (2014a) Colony size and not nest density drives reproductive output in the common tern Sterna hirundo. Ibis 156:48–59. doi:10.1111/ibi.12116

    Google Scholar 

  • Szostek KL, Schaub M, Becker PH (2014b) Immigrants are attracted by local pre-breeders and recruits in a seabird colony. J Anim Ecol 83:1015–1024. doi:10.1111/1365-2656.12206

    PubMed  Google Scholar 

  • Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13:4358–4365

    Google Scholar 

  • Van Oudenhove L, Gauthier G, Lebreton J-D (2014) Year-round effects of climate on demographic parameters of an arctic-nesting goose species. J Anim Ecol 83:1322–1333. doi:10.1111/1365-2656.12230

    PubMed  Google Scholar 

  • Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308:1280–1284. doi:10.1126/science.1109049

    CAS  PubMed  Google Scholar 

  • Weichler T (2004) Seabird distribution on the Humboldt current in northern Chile in relation to hydrography, productivity, and fisheries. ICES J Mar Sci 61:148–154. doi:10.1016/j.icesjms.2003.07.001

    Google Scholar 

  • Weimerskirch H (1992) Reproductive effort in long-lived birds: age-specific patterns of condition, reproduction and survival in the wandering albatross. Oikos 64:464–473

    Google Scholar 

  • Wendeln H, Becker PH (1999) Significance of ring removal in Africa for a common tern Sterna hirundo colony. Ring Migr 19:210–212

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139

    Google Scholar 

  • Zhang H, Becker PH, Rebke M, Bouwhuis S (2015a) Fitness prospects: effects of recruitment age, gender and senescence on reproductive value in a long-lived seabird. J Anim Ecol 84:199–207

    CAS  Google Scholar 

  • Zhang H, Vedder O, Becker PH, Bouwhuis S (2015b) Contrasting between- and within-individual trait effects on mortality risk in a long-lived seabird. Ecology 96:71–79. doi:10.1890/14-0064.1

    Google Scholar 

  • Zhang H, Vedder O, Becker PH, Bouwhuis S (2015c) Age-dependent trait variation: the relative contribution of within-individual change, selective appearance and disappearance in a long-lived seabird. J Anim Ecol. doi:10.1111/1365-2656.12321 in press

    Google Scholar 

  • Zipkin E, Gardner B, Gilbert A et al (2010) Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics. Oecologia 163:893–902

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank first and foremost the many field-assistants, technicians, students and volunteers that have helped compile the very large dataset at Banter See colony over so many years. Ad Corten and Andreas Dänhardt helped us obtain and interpret the relevant fishery data and Olaf Geiter compiled ring-recovery data. David Gremillét, Lise M. Aubry and an anonymous reviewer provided very helpful comments on the manuscript. The project was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft DFG; BE 916/9). Permissions were granted by the regional authorities “Bezirksregierung Weser-Ems, Stadt Wilhelmshaven” and “Nds. Landesamt für Verbraucherschutz und Lebensmittelsicherheit Oldenburg”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lesley Szostek.

Additional information

Communicated by Scott McWilliams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 203 kb)

Supplementary material 2 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szostek, K.L., Becker, P.H. Survival and local recruitment are driven by environmental carry-over effects from the wintering area in a migratory seabird. Oecologia 178, 643–657 (2015). https://doi.org/10.1007/s00442-015-3298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3298-2

Keywords

Navigation