Skip to main content
Log in

How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator–prey interactions via changes in the prey’s ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaltonen K, Bryant AA, Hostetler JA, Oli MK (2009) Reintroducing endangered Vancouver Island marmots: survival and cause-specific mortality rates of captive-born versus wild-born individuals. Biol Conserv 142:2181–2190. doi:10.1016/j.biocon.2009.04.019

    Article  Google Scholar 

  • Aunapuu M, Dahlgren J, Oksanen T, Grellmann D, Oksanen L, Olofsson J, Rammul U, Schneider M, Johansen B, Hygen HO (2008) Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH). Am Nat 171:249–262

    Article  PubMed  Google Scholar 

  • Barker OE, Derocher AE (2010) Habitat selection by arctic ground squirrels (Spermophilus parryii). J Mamm 91:1251–1260. doi:10.1644/10-mamm-a-030.1

    Article  Google Scholar 

  • Batzli GO, Sobaski ST (1980) Distribution, abundance, and foraging patterns of ground squirrels near Atkasook. Alaska Arct Antarct Alp Res 12:501–510. doi:10.2307/1550497

    Article  Google Scholar 

  • Batzli GO, White RG, MacLean SF, Pitelka FA, Collier BD (1980) The herbivore-based trophic system. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds). An Arctic ecosystem: the coastal tundra at barrow, Alaska. Dowden, Hutchinson & Ross, Stroudburg

  • Bennett RP (1999) Effects of food quality on growth and survival of juvenile Columbian ground squirrels (Spermophilus columbianus). Can J Zool 77:1555–1561. doi:10.1139/z99-144

    Article  Google Scholar 

  • Blinnikov MS, Gaglioti BV, Walker DA, Wooller MJ, Zazula GD (2011) Pleistocene graminoid-dominated ecosystems in the Arctic. Quat Sci Rev 30:2906–2929. doi:10.1016/j.quascirev.2011.07.002

    Article  Google Scholar 

  • Blumstein DT, Ozgul A, Yovovich V, van Vuren DH, Armitage KB (2006) Effect of predation risk on the presence and persistence of yellow-bellied marmot (Marmota flaviventris) colonies. J Zool 270:132–138. doi:10.1111/j.1469-7998.2006.00098.x

    Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Gr Stat 7:434–455. doi:10.1080/10618600.1998.10474787

    Google Scholar 

  • Buck CL, Barnes BM (1999a) Annual cycle of body composition and hibernation in free-living arctic ground squirrels. J Mamm 80:430–442. doi:10.2307/1383291

    Article  Google Scholar 

  • Buck CL, Barnes BM (1999b) Temperatures of hibernacula and changes in composition of arcitic ground squirrels over winter. J Mamm 80:1264–1276

    Article  Google Scholar 

  • Byrom AE, Krebs CJ (1999) Natal dispersal of juvenile arctic ground squirrels in the boreal forest. Can J Zool 77:1048–1059

    Article  Google Scholar 

  • Byrom AE, Karels TJ, Krebs CJ, Boonstra R (2000) Experimental manipulation of predation and food supply of arctic ground squirrels in the boreal forest. Can J Zool 78:1309–1319. doi:10.1139/cjz-78-8-1309

    Article  Google Scholar 

  • Carey HV (1985) Nutritional ecology of yellow-bellied marmots in the white mountains of California. Ecography 8:259–264

    Article  Google Scholar 

  • Carl EA (1971) Population control in arctic ground squirrels. Ecology 52:395–413. doi:10.2307/1937623

    Article  Google Scholar 

  • Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201. doi:10.1016/j.tree.2007.12.004

    Article  PubMed  Google Scholar 

  • Davidson AD, Detling JK, Brown JH (2012) Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Front Ecol Environ 10:477–486. doi:10.1890/110054

    Article  Google Scholar 

  • Densmore RV (2008) Evidence for higher soil temperature and potassium promoting invasion of the Common Dandelion, Taraxacum officinale, in Denali National Park and Preserve Alaska. Can Field Nat 112:67–69

    Google Scholar 

  • Dingman SL, Koutz FR (1974) Relations among vegetation, permafrost, and potential insolation in Central Alaska. Arct Antarct Alp Res 6:37–47

    Article  Google Scholar 

  • Donker SA, Krebs CJ (2011) Habitat-specific distribution and abundance of arctic ground squirrels (Urocitellus parryii plesius) in southwest Yukon. Can J Zool 89:570–576. doi:10.1139/z11-041

    Article  Google Scholar 

  • Donker SA, Krebs CJ (2012) Evidence for source-sink dynamics in a regional population of arctic ground squirrels (Urocitellus parryii plesius). Wildl Res 39:163–170. doi:10.1071/wr11167

    Article  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Gretarsdottir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jonsdottir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenstrom A, Tolvanen A, Totland O, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. doi:10.1111/j.1461-0248.2011.01716.x

    Article  PubMed  Google Scholar 

  • Epstein HE, Beringer J, Gould WA, Lloyd AH, Thompson CD, Chapin FS, Michaelson GJ, Ping CL, Rupp TS, Walker DA (2004) The nature of spatial transitions in the Arctic. J Biogeogr 31:1917–1933. doi:10.1111/j.1365-2699.2004.01140.x

    Article  Google Scholar 

  • Evju M, Halvorsen R, Rydgren K, Austrheim G, Mysterud A (2010) Interactions between local climate and grazing determine the population dynamics of the small herb Viola biflora. Oecologia 163:921–933. doi:10.1007/s00442-010-1637-x

    Article  PubMed  Google Scholar 

  • Gálvez-Bravo L, López-Pintor A, Rebollo S, Gómez-Sal A (2011) European rabbit (Oryctolagus cuniculus) engineering effects promote plant heterogeneity in Mediterranean dehesa pastures. J Arid Environ 75:779–786. doi:10.1016/j.jaridenv.2011.03.015

    Article  Google Scholar 

  • Garin I, Aldezabal A, Herrero J, Garcia-Serrano A, Remón (2008) Diet selection of the Alpine marmot (Marmota m. marmota L.) in the Pyrenees. Rev Ecol 63:383–390

  • Gauthier G, Berteaus D, Bȇty J, Arnaud T, Therrien J, McKinnon L, Legagneux P, Cadieux M (2011) The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecolsystems. Ecoscience 18:223–235

    Article  Google Scholar 

  • Gauthier G, Bêty J, Cadieux M-C, Legagneux P, Doiron M, Chevallier C, Lai S, Tarroux A, Berteaux D (2013) Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos Trans R Soc B Biol Sci 368:20120482. doi:10.1098/rstb.2012.0482

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472. doi:10.1214/ss/1177011136

    Article  Google Scholar 

  • Gillis EA, Hik DS, Boonstra R, Karels TJ, Krebs CJ (2005a) Being high is better: effects of elevation and habitat on arctic ground squirrel demography. Oikos 108:231–240. doi:10.1111/j.0030-1299.2005.13535.x

    Article  Google Scholar 

  • Gillis EA, Morrison SF, Zazula GD, Hik DS (2005b) Evidence for selective caching by arctic ground squirrels living in alpine meadows in the Yukon. Arctic 58:354–360. doi:10.14430/arctic449

    Google Scholar 

  • Gough L, Moore JC, Shaver GR, Simpson RT, Johnson DR (2012) Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Ecology 93:1683–1694. doi:10.1890/11-1631.1

    Article  PubMed  Google Scholar 

  • Hannon MJ, Jenkins SH, Crabtree RL, Swanson AK (2006) Visibility and vigilance: behavior and population ecology of Uinta ground squirrels (Spermophilus armatus) in different habitats. J Mamm 87:287–295. doi:10.1644/05-MAMM-A-081R2.1

    Article  Google Scholar 

  • Hansen BB, Aanes R, Herfindal I, Kohler J, Sæther B-E (2011) Climate, icing, and wild arctic reindeer: past relationships and future prospects. Ecology 92:1917–1923. doi:10.1890/11-0095.1

    Article  PubMed  Google Scholar 

  • Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology 82:2045–2058. doi:10.1890/0012-9658(2001)082[2045:tiohop]2.0.co;2

  • Henry GR, Harper K, Chen W, Deslippe J, Grant R, Lafleur P, Lévesque E, Siciliano S, Simard S (2012) Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: results from the Canadian IPY program. Clim Change 115:207–234. doi:10.1007/s10584-012-0587-1

    Article  Google Scholar 

  • Hill VL, Florant GL (1999) Patterns of fatty acid composition in free-ranging yellow-bellied marmots (Marmota flaviventris) and their diet. Can J Zool 77:1494–1503

    Article  CAS  Google Scholar 

  • Hoset KS, Kyrö K, Oksanen T, Oksanen L, Olofsson J (2014) Spatial variation in vegetation damage relative to primary productivity, small rodent abundance and predation. Ecography 37:894–901. doi:10.1111/ecog.00791

    Article  Google Scholar 

  • Huntly NJ (1987) Influence of refuging consumers (Pikas: Ochotona princeps) on subalpine meadow vegetation. Ecology 68:274–283. doi:10.2307/1939258

    Article  Google Scholar 

  • Ibrahim JG, Laud PW (1991) On Bayesian analysis of generalized linear models using Jeffreys’s prior. J Am Stat Assoc 86:981–986. doi:10.2307/2290514

    Article  Google Scholar 

  • Jia GJ, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30:2067. doi:10.1029/2003gl018268

    Article  Google Scholar 

  • Karels TJ, Boonstra R (1999) The impact of predation on burrow use by Arctic ground squirrels in the boreal forest. Proc R Soc B Biol Sci 266:2117–2123. doi:10.1098/rspb.1999.0896

    Article  CAS  Google Scholar 

  • Karels TJ, Boonstra R (2000) Concurrent density dependence and independence in populations of arctic ground squirrels. Nature 408:460–463. doi:10.1038/35044064

    Article  CAS  PubMed  Google Scholar 

  • Karels TJ, Byrom AE, Boonstra R, Krebs CJ (2000) The interactive effects of food and predators on reproduction and overwinter survival of arctic ground squirrels. J Anim Ecol 69:235–247

    Article  Google Scholar 

  • Kauffman MJ, Varley N, Smith DW, Stahler DR, MacNulty DR, Boyce MS (2007) Landscape heterogeneity shapes predation in a newly restored predator–prey system. Ecol Lett 10:690–700. doi:10.1111/j.1461-0248.2007.01059.x

    Article  PubMed  Google Scholar 

  • Lehrer EW, Schooley RL, Whittington JK (2011) Survival and antipredator behavior of woodchucks (Marmota monax) along an urban–agricultural gradient. Can J Zool 90:12–21. doi:10.1139/z11-107

    Article  Google Scholar 

  • Lyman C (2013) Hibernation and torpor in mammals and birds. Elsevier (eBook)

  • McKendrick JD, Batzli GO, Everett KR, Swanson JC (1980) Some effects of mammalian herbivores and fertilization on tundra soils and vegetation. Arct Antact Alp Res 12:565–578. doi:10.2307/1550501

    Article  Google Scholar 

  • McLean IG (1985) Seasonal patterns and sexual differences in the feeding ecology of arctic ground squirrels (Spermophilus parryii plesius). Can J Zool 63:1298–1301. doi:10.1139/z85-195

    Article  Google Scholar 

  • Morrison P, Galster W (1975) Patterns of hibernation in the arctic ground squirrel. Can J Zool 53:1345–1355. doi:10.1139/z75-160

    Article  CAS  PubMed  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi:10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  • Normand S, Randin C, Ohlemüller R, Bay C, Høye TT, Kjær ED, Körner C, Lischke H, Maiorano L, Paulsen J, Pearman PB, Psomas A, Treier UA, Zimmermann NE, Svenning J-C (2013) A greener greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philos Trans R Soc B Biol Sci 368:20120479. doi:10.1098/rstb.2012.0479

    Article  Google Scholar 

  • Oksanen L (1983) Trophic exploitation and arctic phytomass patterns. Am Nat 122:45–52

    Article  Google Scholar 

  • Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol 15:2681–2693. doi:10.1111/j.1365-2486.2009.01935.x

    Article  Google Scholar 

  • Ordenana MA, van Vuren DH, Draper JP (2012) Habitat associations of California ground squirrels and Botta’s pocket gophers on levees in California. J Wildl Manage 76:1712–1717. doi:10.1002/jwmg.402

    Article  Google Scholar 

  • Ovens C (2011) Kinship and use of underground space by adult female Richardson’s ground squirrels (Urocitellus richarsonii). Master’s thesis, University of Lethbridge, Canada

  • Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3:673–677. doi:10.1038/nclimate1858

    Article  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna

  • Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an arctic herbivore through trophic mismatch. Philos Trans R Soc B Biol Sci 363:2367–2373. doi:10.1098/rstb.2007.2207

    Article  Google Scholar 

  • Post E, Pedersen C (2008) Opposing plant community responses to warming with and without herbivores. Proc Natl Acad Sci 105:12353–12358. doi:10.1073/pnas.0802421105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price LW (1971) Geomorphic effect of the arctic ground squirrel in an alpine environment. Geogr Ann Ser A Phys Geogr 53:100–106. doi:10.2307/520669

    Article  Google Scholar 

  • Ravolainen VT, Bråthen KA, Yoccoz NG, Nguyen JK, Ims RA (2014) Complementary impacts of small rodents and semi-domesticated ungulates limit tall shrub expansion in the tundra. J Appl Ecol 51:234–241. doi:10.1111/1365-2664.12180

    Article  Google Scholar 

  • Roland CA, Oakley K, Debevec EM, Loomis T (2004) Monitoring vegetation structure and composition at multiple scales in the Central Alaska Network. NPS technical report CAKN-001. National Park Service, Fairbanks. http://science.nature.nps.gov/im-monitor/protocols/CAKN_Vegetation.zip. Accessed 28 November 2011

  • Roland CA, Schmidt JH, Nicklen EF (2012) Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska. Ecol Monogr 83:19–48. doi:10.1890/11-2136.1

    Article  Google Scholar 

  • Schooley RL, Sharpe PB, van Horne B (1996) Can shrub cover increase predation risk for a desert rodent? Canadian. J Zool 74:157–163. doi:10.1139/z96-020

    Google Scholar 

  • Sharma S, Couturier S, Côté SD (2009) Impacts of climate change on the seasonal distribution of migratory caribou. Glob Change Biol 15:2549–2562. doi:10.1111/j.1365-2486.2009.01945.x

    Article  Google Scholar 

  • Sokolov V, Ehrich D, Yoccoz NG, Sokolov A, Lecomte N (2012) Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists. PLoS ONE 7:e50335. doi:10.1371/journal.pone.0050335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stueve KM, Isaacs RE, Tyrrell LE, Densmore RV (2010) Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska range. Ecology 92:496–506. doi:10.1890/09-1725.1

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the Arctic. Nature 411:546–547. doi:10.1038/35079180

    Article  CAS  PubMed  Google Scholar 

  • van Vuren DH (2001) Predation on yellow-bellied marmots (Marmota flaviventris). Am Midl Nat 145:94–100. doi:10.1674/0003-0031(2001)145[0094:poybmm]2.0.co;2

  • Wahren CHA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–552. doi:10.1111/j.1365-2486.2005.00927.x

    Article  Google Scholar 

  • Wheeler HC (2012) Population, individual and behavioural approaches to understanding the implications of habitat change for arctic ground squirrels. University of Alberta, Alberta

    Google Scholar 

  • Wheeler HC, Hik DS (2013) Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. Mamm Rev 43:238–255. doi:10.1111/j.1365-2907.2012.00220.x

    Article  Google Scholar 

  • Wheeler HC, Hik DS (2014) Giving-up densities and foraging behaviour indicate potential effect of shrub encroachment on arctic ground squirrels. Anim Behav 95:1–8

    Article  Google Scholar 

  • Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergard M, Gussarova G, Haile J, Craine J, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Brathen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sonstebo JH, Murton J, Sher A, Rasmussen M, Ronn R, Mourier T, Cooper A, Austin J, Moller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MTP, Kjaer KH, Orlando L, Brochmann C, Taberlet P (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51. doi:10.1038/nature12921

    Article  CAS  PubMed  Google Scholar 

  • Zamin TJ, Grogan P (2013) Caribou exclusion during a population low increases deciduous and evergreen shrub species biomass and nitrogen pools in low Arctic tundra. J Ecol 101:671–683. doi:10.1111/1365-2745.12082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is a contribution by the Center for Informatics Research on Complexity in Ecology (CIRCE), funded by the Aarhus University Research Foundation under the AU Ideas program (H. W., J. C. S.), a Murie Science and Learning Research Fellowship from Alaska Geographic (H. W.) and by the Central Alaska Network of the National Park Service (C. R.). J. D. C. was supported by a grant from the Rhineland-Palatinate Ministry of Education, Science, Youth and Culture (The consequences of global change on biological resources, legislation and setting of standards), and by the NoAClim project grant (number 225005) of the Norge Forskningsråd. We thank T. Karels and two anonymous reviewers for helpful comments on the manuscript. We thank L. C. Dempsey, C. Gibson, R. Noel, A. Carlyle and M. Richard for assistance with fieldwork. We thank C. McIntyre and L. Tyrrell for helpful discussions and logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Wheeler.

Additional information

Communicated by Janne Sundell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, H.C., Chipperfield, J.D., Roland, C. et al. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels. Oecologia 178, 915–929 (2015). https://doi.org/10.1007/s00442-015-3240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3240-7

Keywords

Navigation