Skip to main content
Log in

Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (Narea), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (Nmass), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψmid), LMA, and Narea were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ13C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, Nmass, C:N ratio, and δ13C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψmid constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and Narea distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasamaa K, Sõber A, Hartung W, Niinemets U (2004) Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy. Trees 18:93–101. doi:10.1007/s00468-003-0285-8

    Article  Google Scholar 

  • Amthor JS (1994) Scaling CO2–photosynthesis relationships from the leaf to the canopy. Photosynth Res 39:321–350

  • Bauerle WL, Hinckley TM, Cermak J, Kucera J, Bible K (1999) The canopy water relations of old-growth Douglas-fir trees. Trees 13:211–217

    Article  Google Scholar 

  • Berry SC, Varney GT, Flanagan LB (1997) Leaf δ13C in Pinus resinosa trees and understory plants: variation associated with light and CO2 gradients. Oecologia 109:499–506

    Article  Google Scholar 

  • Bloor JMG, Grubb PJ (2004) Morphological plasticity of shade-tolerant tropical rainforest tree seedlings exposed to light changes. Funct Ecol 18:337–348. doi:10.1111/j.0269-8463.2004.00831.x

    Article  Google Scholar 

  • Bond BJ, Farnsworth BT, Coulombe RA, Winner WE (1999) Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. Oecologia 120:183–192. doi:10.1007/s004420050847

    Article  Google Scholar 

  • Brooks JR, Hinckley TM, Sprugel DG (1994) Acclimation responses of mature Abies amabilis sun foliage to shading. Oecologia 100:316–324. doi:10.1007/Bf00316960

    Article  Google Scholar 

  • Brooks JR, Sprugel DG, Hinckley TM (1996) The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis foliage within the canopy. Oecologia 107:21–32. doi:10.1007/BF00582231

    Article  Google Scholar 

  • Brooks JR, Schulte PJ, Bond BJ, Coulombe R, Domec JC, Hinckley TM, McDowell N, Phillips N (2003) Does foliage on the same branch compete for the same water? Experiments on Douglas-fir trees. Trees 17:101–108. doi:10.1007/s00468-002-0207-1

    Google Scholar 

  • Buckley TN, Cescatti A, Farquhar GD (2013) What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism? Plant Cell Environ 36:1547–1563. doi:10.1111/pce.12091

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Dawson TE (2007) Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol 174:626–636. doi:10.1111/j.1469-8137.2007.02017.x

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Pittermann J, Dawson TE (2006) Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant Cell Environ 29:229–239. doi:10.1111/j.1365-3040.2005.01415.x

    Article  PubMed  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Clark DB, Clark DA, Ryan MG (2010) Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91:1730–1739. doi:10.1890/09-1326.1

    Article  PubMed  Google Scholar 

  • Claussen JW (1996) Acclimation abilities of three tropical rainforest seedlings to an increase in light intensity. Forest Ecol Manag 80:245–255. doi:10.1016/0378-1127(95)03606-7

    Article  Google Scholar 

  • Coble AP, Cavaleri MA (2014) Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Tree Physiol 34:146–158. doi:10.1093/treephys/tpt126

    Article  CAS  PubMed  Google Scholar 

  • Coble AP, Autio A, Cavaleri MA, Binkley D, Ryan MG (2014) Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA. Trees 28:1–15. doi:10.1007/s00468-013-0925-6

    Article  Google Scholar 

  • Damesin C, Lelarge C (2003) Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ 26:207–219. doi:10.1046/j.1365-3040.2003.00951.x

    Article  Google Scholar 

  • Damesin C, Rambal S, Joffre R (1997) Between-tree variations in leaf δ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability. Oecologia 111:26–35. doi:10.1007/s004420050204

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • Duursma RA, Marshall JD (2006) Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees 20:496–506. doi:10.1007/s00468-006-0065-3

    Article  Google Scholar 

  • Eklund L, Eliasson L (1990) Effects of calcium ion concentration on cell wall synthesis. J Exp Bot 41:863–867. doi:10.1093/jxb/41.7.863

    Article  CAS  Google Scholar 

  • Ellsworth DS, Reich PB (1992a) Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Funct Ecol 6:423–435. doi:10.2307/2389280

    Article  Google Scholar 

  • Ellsworth DS, Reich PB (1992b) Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. Tree Physiol 10:1–20

    Article  PubMed  Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56:341–347. doi:10.1007/BF00379710

    Article  Google Scholar 

  • Goulet F, Bellefleur P (1986) Leaf morphology plasticity in response to light environment in deciduous tree species and its implication on forest succession. Can J Forest Res 16:1192–1195. doi:10.1139/x86-212

    Article  Google Scholar 

  • Gutschick VP, Wiegel FW (1988) Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. Am Nat 132:67–86. doi:10.1086/284838

    Article  Google Scholar 

  • Hanson PJ, Amthor JS, Wullschleger SD, Wilson KB, Grant RF, Hartley A, Hui D, Hunt ER, Johnson DW, Kimball JS, King AW, Luo Y, McNulty SG, Sun G, Thornton PE, Wang S, Williams M, Baldocchi DD, Cushman RM (2004) Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data. Ecol Monogr 74:443–489. doi:10.1890/03-4049

    Article  Google Scholar 

  • He WM, Dong M (2003) Physiological acclimation and growth response to partial shading in Salix matsudana in the Mu Us Sandland in China. Trees 17:87–93

    Article  Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco—an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380

    Article  CAS  Google Scholar 

  • Henriksson J (2001) Differential shading of branches or whole trees: survival, growth, and reproduction. Oecologia 126:482–486. doi:10.1007/s004420000547

    Article  Google Scholar 

  • Hikosaka K (2014) Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant Cell Environ 37:2077–2085

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Werger MJA (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526

    Article  Google Scholar 

  • Hollinger DY (1989) Canopy organization and foliage photosynthetic capacity in a broad-leaved evergreen montane forest. Funct Ecol 3:53–62. doi:10.2307/2389675

    Article  Google Scholar 

  • Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiol 16:627–634

    Article  PubMed  Google Scholar 

  • Hollinger DY, Ollinger SV, Richardson AD, Meyers TP, Dail DB, Martin ME, Scott NA, Arkebauer TJ, Baldocchi DD, Clark KL, Curtis PS, Davis KJ, Desai AR, Dragoni D, Goulden ML, Gu L, Katul GG, Pallardy SG, Paw UKT, Schmid HP, Stoy PC, Suyker AE, Verma SB (2010) Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob Change Biol 16:696–710

    Article  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Ishii H, Ohsugi Y (2011) Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation. Tree Physiol 31:819–830. doi:10.1093/treephys/tpr079

    Article  CAS  PubMed  Google Scholar 

  • Ishii HT, Jennings GM, Sillett SC, Koch GW (2008) Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia 156:751–763. doi:10.1007/s00442-008-1032-z

    Article  PubMed  Google Scholar 

  • Ishii HR, Azuma W, Kuroda K, Sillett S (2014) Pushing the limits to tree height: could foliar water storage compensate for hydraulic constraints in Sequoia sempervirens. Funct Ecol 28:1087–1093. doi:10.1111/1365-2435.12284

  • Jerez M, Dean TJ, Roberts SD, Evans DL (2004) Patterns of branch permeability with crown depth among loblolly pine families differing in growth rate and crown size. Trees 18:145–150. doi:10.1007/s00468-003-0288-5

    Article  Google Scholar 

  • Jones TA, Thomas SC (2007) Leaf-level acclimation to gap creation in mature Acer saccharum trees. Tree Physiol 27:281–290. doi:10.1093/treephys/27.2.281

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K (2010) A conceptual framework for the study of modular responses to local environmental heterogeneity within the plant crown and a review of related concepts. Ecol Res 25:733–744. doi:10.1007/s11284-009-0688-0

    Article  Google Scholar 

  • Kitajima K, Mulkey SS, Samaniego M, Wright SJ (2002) Decline of photosynthetic capacity with leaf age and position in two tropical pioneer tree species. Am J Bot 89:1925–1932

    Article  PubMed  Google Scholar 

  • Knapp BO, Wang GG, Walker JL (2008) Relating the survival and growth of planted longleaf pine seedlings to microsite conditions altered by site preparation treatments. Forest Ecol Manag 255:3768–3777

    Article  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. doi:10.1038/Nature02417

    Article  CAS  PubMed  Google Scholar 

  • Lacointe A, Deleens E, Ameglio T, Saint-Joanis B, Lelarge C, Vandame M, Song GC, Daudet FA (2004) Testing the branch autonomy theory: a 13C/14C double-labelling experiment on differentially shaded branches. Plant Cell Environ 27:1159–1168. doi:10.1111/j.1365-3040.2004.01221.x

    Article  CAS  Google Scholar 

  • Lemoine D, Cochard H, Granier A (2002) Within crown variation in hydraulic architecture in beech (Fagus sylvatica L): evidence for a stomatal control of xylem embolism. Ann For Sci 59:19–27. doi:10.1051/forest:2001002

    Article  Google Scholar 

  • Livingston NJ, Whitehead D, Kelliher FM, Wang Y-P, Grace JC, Walcroft AS, Byers JN, McSeveny TM, Millard P (1998) Nitrogen allocation and carbon isotope fractionation in relation to intercepted radiation and position in a young Pinus radiata D. Don tree. Plant Cell Environ 21:795–803. doi:10.1046/j.1365-3040.1998.00314.x

    Article  CAS  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    Article  CAS  PubMed  Google Scholar 

  • Martens SN, Ustin SL, Rousseau RA (1993) Estimation of tree canopy leaf area index by gap fraction analysis. Forest Ecol Manag 61:91–108

    Article  Google Scholar 

  • Medlyn B (2004) A MAESTRO retrospective. In: Mencuccini M GJ, Moncrieff J, McNaughton KG (eds) Forests at the land–atmosphere interface. Oxford University Press, Oxford

  • Meinzer FC, Bond BJ, Karanian JA (2008) Biophysical constraints on leaf expansion in a tall conifer. Tree Physiol 28:197–206. doi:10.1093/treephys/28.2.197

    Article  PubMed  Google Scholar 

  • Migita C, Chiba Y, Tange T (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiol 27:63–70

    Article  CAS  PubMed  Google Scholar 

  • Mullin LP, Sillett SC, Koch GW, Tu KP, Antoine ME (2009) Physiological consequences of height-related morphological variation in Sequoia sempervirens foliage. Tree Physiol 29:999–1010

    Article  PubMed  Google Scholar 

  • Naidu SL, DeLucia EH (1998) Physiological and morphological acclimation of shade-grown tree seedlings to late-season canopy gap formation. Plant Ecol 138:27–40

    Article  Google Scholar 

  • Niinemets U (1997) Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies. Trees 11:144–154

    Google Scholar 

  • Niinemets U (1999) Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol 144:35–47

    Article  Google Scholar 

  • Niinemets U, Valladares F (2004) Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biol 6:254–268. doi:10.1055/s-2004-817881

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U, Kull O, Tenhunen JD (1999) Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. Int J Plant Sci 160:837–848. doi:10.1086/314180

    Article  PubMed  Google Scholar 

  • Niinemets U, Ellsworth DS, Lukjanova A, Tobias M (2001) Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol 21:1231–1244. doi:10.1093/treephys/21.17.1231

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U, Sonninen E, Tobias M (2004) Canopy gradients in leaf intercellular CO2 mole fractions revisited: interactions between leaf irradiance and water stress need consideration. Plant Cell Environ 27:569–583. doi:10.1111/j.1365-3040.2003.01168.x

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927. doi:10.1111/j.1365-3040.2005.01344.x

    Article  Google Scholar 

  • Oldham AR, Sillett SC, Tomescu AMF, Koch GW (2010) The hydrostatic gradients, not light availability, drive height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy. Am J Bot 97:1087–1097

    Article  PubMed  Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith ML, Paw UKT, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 49:19336–19341

  • Peltoniemi MS, Duursma RA, Medlyn BE (2012) Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol 32:510–519. doi:10.1093/treephys/tps023

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 8 June 2011

  • Raulier F, Bernier PY, Ung CH (1999) Canopy photosynthesis of sugar maple (Acer saccharum): comparing big-leaf and multilayer extrapolations of leaf-level measurements. Tree Physiol 19:407–420. doi:10.1093/treephys/19.7.407

    Article  PubMed  Google Scholar 

  • Reich PB, Walters MB (1994) Photosynthesis-nitrogen relations in Amazonian tree species. II. Variation in nitrogen vis-à-vis specific leaf area influences mass- and area-based expressions. Oecologia 97:73–81

    Article  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    Article  PubMed  Google Scholar 

  • Ryu Y, Baldocchi DD, Kobayashi H, van Ingen C, Li J, Black TA, Beringer J, van Gorsel E, Knohl A, Law BE, Roupsard O (2011) Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochem Cy 25:Gb4017

    Article  Google Scholar 

  • Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

  • Sack L, Melcher PJ, Liu WH, Middleton E, Pardee T (2006) How strong is intracanopy leaf plasticity in temperate deciduous trees? Am J Bot 93:829–839. doi:10.3732/ajb.93.6.829

    Article  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216

    Article  Google Scholar 

  • Sellin A, Kupper P (2007) Effects of enhanced hydraulic supply for foliage on stomatal responses in little-leaf linden (Tilia cordata Mill.). Eur J Forest Res 126:241–251

    Article  CAS  Google Scholar 

  • Sellin A, Õunapuu E, Kupper P (2008) Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula). Physiol Plant 134:412–420. doi:10.1111/j.1399-3054.2008.01142.x

    Article  CAS  PubMed  Google Scholar 

  • Thornton PE, Zimmermann NE (2007) An improved canopy integration scheme for a land surface model with prognostic canopy structure. J Clim 20:3902–3923. doi:10.1175/Jcli4222.1

    Article  Google Scholar 

  • Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27:229–236. doi:10.1111/j.1365-3040.2003.01141.x

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/Nature02403

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nobori H, Sasaki H, Hayasaka K (1999) The effects of shading on translocation of 13C-photosynthates between lateral branches during the rapid growth period of cherry, pear, and Japanese persimmon fruit. J Japan Soc Hort Sci 68:302–311

  • Yasumura Y, Hikosaka K, Hirose T (2006) Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiol 26:1315–1323. doi:10.1093/treephys/26.10.1315

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zheng Q, Tyree MT (2011a) Factors controlling plasticity of leaf morphology in Robinia psuedoacacia L. I: Height-associated variation in leaf structure. Ann Forest Sci 69:1–9. doi:10.1007/s13595-011-0133-8

  • Zhang Y, Equia MA, Zheng Q, Tyree MT (2011b) Factors controlling plasticity of leaf morphology in Robinia pseudoacacia: III. Biophysical constraints on leaf expansion under long-term water stress. Physiol Plantarum 143:367–374

  • Zwieniecki MA, Boyce CK, Holbrook NM (2004) Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant Cell Environ 27:357–365. doi:10.1111/j.1365-3040.2003.01153.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ashley Coble, Alex Collins, Mickey Jarvi, Dr. Kevyn Juneau, Alida Mau, and Brittany Vanderwall for their assistance in the lab and field. We also thank two anonymous reviewers and Dr. Christian Messier for helpful comments on the manuscript. We also thank ABEE, Inc. for installing a safe and effective zip-line system. Research was sponsored by the National Institute of Food and Agriculture US Department of Agriculture McIntire-Stennis Cooperative Forestry Research Program (grant # 32100-06098) and the Ecosystem Science Center at Michigan Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam P. Coble.

Additional information

Communicated by Kouki Hikosaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 987 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coble, A.P., Cavaleri, M.A. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia 177, 1131–1143 (2015). https://doi.org/10.1007/s00442-015-3219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3219-4

Keywords

Navigation