Skip to main content
Log in

Altitudinally divergent adult phenotypes in Iberian wall lizards are not driven by egg differences or hatchling growth rates

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The interplay between ecological conditions and life histories has been widely acknowledged in vertebrates, particularly in lizards. Environmental conditions may exert different selective pressures and produce divergent phenotypes even in geographically and genetically close populations. The Iberian wall lizard constitutes a perfect model organism as it is considered a species complex with a complicated evolutionary history. Here, we focus on two proximate populations in which we examined adult morphology and reproductive investment of wild-caught lizards along a 500-m altitudinal gradient with contrasting environmental conditions, where adults show marked morphological differences in spite of being closely related. Also, we performed a common garden experiment to examine embryonic and hatchling growth. We focused on reproductive investment per clutch, incubation time, egg size, morphology and growth rate of hatchlings. Results showed clutch size differences between populations that were independent of the larger body size of highland females. However, there were no egg morphological differences between populations, except for egg width, and this difference disappeared after controlling for female body size. Hatchling lizards from both populations did not differ in morphology. Moreover, we did not observe differences between populations or sexes in hatchling growth. Overall, we provide evidence that the differences in adult body size and clutch size are not driven by size at hatching which is not contributed to by egg size, nor are intrinsic hatchling growth rates associated with the environmental conditions experienced in our common garden experiment, suggesting that adult phenotypes are not the result of intrinsic differences between populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adolph SC, Porter WP (1993) Temperature, activity and lizard life histories. Am Nat 142:273–295. doi:10.1086/285538

    Article  CAS  PubMed  Google Scholar 

  • Angilletta MJ Jr, Niewiarowski PH, Dunham AE, Leaché AD, Porter WP (2004) Bergmann’s clines in ectotherms: illustrating a life-history perspective with sceloporine lizards. Am Nat 164:E168–E183. doi:10.1086/425222

    Article  Google Scholar 

  • Angilletta MJ Jr, Oufiero CE, Leache AD (2006) Direct and indirect effects of environmental temperature on the evolution of reproductive strategies: an information-theoretic approach. Am Nat 168:E123–E135. doi:10.1086/507880

    Article  PubMed  Google Scholar 

  • Aragón P, Fitze PS (2014) Geographical and temporal body size variation in a reptile: roles of sex, ecology, phylogeny and ecology structured in phylogeny. PLoS One 9:e104026. doi:10.1371/journal.pone.0104026

    Article  PubMed Central  PubMed  Google Scholar 

  • Arendt JD (1997) Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol 72:149–177. doi:10.1086/419764

    Article  Google Scholar 

  • Ashton KG, Feldman CR (2003) Bergmann’s rule in non-avian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163. doi:10.1111/j.0014-3820.2003.tb00324.x

    Article  PubMed  Google Scholar 

  • Atkinson D (1994) Temperature and organism size: a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Bauwens D (1985) Demografische kenmerken en aantalsdynamiek in den populatie van de Levendbarende Hagedis (Laceta vivipara). PhD thesis, University of Antwerp

  • Bauwens D, Damme V (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49:848–863. doi:10.2307/2410408

    Article  Google Scholar 

  • Bauwens D, Verheyen RF (1987) Variation of reproductive traits in a population of the lizard Lacerta vivipara. Ecography 10:120–127. doi:10.1111/j.1600-0587.1987.tb00748.x

    Article  Google Scholar 

  • Berven KA, Gill DE (1983) Interpreting geographic variations in life-history traits. Am Zool 23:85–97. doi:10.1093/icb/23.1.85

    Google Scholar 

  • Bonnet X, Naulleau G, Shine R, Lourdais O (2001) Short-term versus long-term effects of food intake on reproductive output in a viviparous snake, Vipera aspis. Oikos 92:297–308. doi:10.1034/j.1600-0706.2001.920212.x

    Article  Google Scholar 

  • Boyce MS (1979) Seasonality and patterns of natural selection for life histories. Am Nat 114:569–583. doi:10.1086/283503

    Article  Google Scholar 

  • Brandt R, Navas CA (2011) Life-history evolution on tropidurinae lizards: influence of lineage, body size and climate. PLoS One 6:e20040. doi:10.1371/journal.pone.0020040.t004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buckley CR, Irschick DJ, Adolph SC (2007) Testing the persistence of phenotypic plasticity after incubation in the western fence lizard, Sceloporus occidentalis. Evol Ecol Res 9:169–183. doi:10.1016/j.applanim.2006.10.002

    Google Scholar 

  • Caley M, Schwarzkopf L (2004) Complex growth rate evolution in a latitudinally widespread species. Evolution 58:862–869. doi:10.1554/03-493

    Article  PubMed  Google Scholar 

  • Carretero MA (2008) An integrated assessment of a group with complex systematics: the Iberomaghrebian lizard genus Podarcis (Squamata, Lacertidae). Integr Zool 4:247–266. doi:10.1111/j.1749-4877.2008.00102.x

    Article  Google Scholar 

  • Congdon JD (1989) Proximate and evolutionary constraints on energy relations of reptiles. Physiol Zool 62:356–373

    Google Scholar 

  • Díaz JA, Iraeta P, Verdú-Ricoy J, Siliceo I, Salvador A (2011) Intraspecific variation of reproductive traits in a Mediterranean lizard: clutch, population, and lineage effects. Evol Biol 39:106–115. doi:10.1007/s11692-011-9144-5

    Article  Google Scholar 

  • Du WG, Ji X, Zhang YP, Xu XF, Shine R (2005) Identifying sources of variation in reproductive and life-history traits among five populations of a Chinese lizard (Takydromus septentrionalis, Lacertidae). Biol J Linn Soc 85:443–453. doi:10.1111/j.1095-8312.2005.00508.x

    Article  Google Scholar 

  • Du WG, Warner DA, Langkilde T, Robbins T, Shine R (2012) The roles of pre- and post-hatching growth rates in generating a latitudinal cline of body size in the eastern fence lizard (Sceloporus undulatus). Biol J Linn Soc 106:202–209. doi:10.1111/j.1095-8312.2011.01846.x

    Article  Google Scholar 

  • Du WG, Robbins TR, Warner DA, Langkilde T, Shine R (2013) Latitudinal and seasonal variation in reproductive effort of the eastern fence lizard (Sceloporus undulatus). Integr Zool. doi:10.1111/1749-4877.12072

    PubMed  Google Scholar 

  • Dunham AE, Grant BW, Overall KL (1989) Interfaces between biophysical and physiological ecology of terrestrial vertebrate ectotherms. Physiol Zool 62:335–355

    Google Scholar 

  • Edwards SV, Kot M (1995) Comparative methods at the species level: geographic variation in morphology and group size in grey-crowned babblers (Pomatostomus temporalis). Evolution 49:1134–1146. doi:10.2307/2410438

    Article  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, Princeton

    Google Scholar 

  • Ferguson GW, Talent LG (1993) Life-history traits of the lizard Sceloporus undulatus from two populations raised in a common laboratory environment. Oecologia 93:88–94. doi:10.1007/BF00321196

    Article  Google Scholar 

  • Gabirot M, López P, Martín J (2012) Differences in chemical sexual signals may promote reproductive isolation and cryptic speciation between Iberian wall lizard populations. Int J Evol Biol. 2012:Article ID 698520. doi:10.1155/2012/698520

  • Gabirot M, López P, Martín J (2013) Female mate choice based on pheromone content may inhibit reproductive isolation between distinct populations of Iberian wall lizards. Curr Zool 59:210–220

    CAS  Google Scholar 

  • Galan P (2003) Reproductive characteristics of an insular population of the lizards Podarcis hispanica from northwest Spain (Cíes Islands, Galicia). Copeia 2003:657–665. doi:10.1643/CH-02-235R1

    Article  Google Scholar 

  • Geniez P, Sá-Sousa P, Guillaume CP, Cluchier A, Crochet P (2014) Systematics of the Podarcis hispanicus complex (Sauria, Lacertidae). III. Valid nomina of the western and central Iberian forms. Zootaxa 3794:1–51. doi:10.11646/zootaxa.3794.1.1

    Article  PubMed  Google Scholar 

  • Guillaume CP (1987) Les petits lacertidés du Bassin Mediterranéen Occidental (genera Podarcis et Archeolacerta essentiellement). PhD thesis, University of Science and Technology, Montpellier

  • Harris DJ, Sa-Sousa P (2002) Molecular phylogenetics of iberian wall lizards (Podarcis): is Podarcis hispanica a species complex? Mol Phyl Evol 23:75–81. doi:10.1006/mpev.2001.1079

    Article  CAS  Google Scholar 

  • Herrel A, Joachim R, Vanhooydonck B, Irschick DJ (2006) Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus. Biol J Linn Soc 89:443–454. doi:10.1111/j.1095-8312.2006.00685.x

    Article  Google Scholar 

  • Heulin B (1985) Reproduction and morphology of the common lizard (Zootoca vivipara) from montane populations in Slovakia. Zool Sci 30:92–98. doi:10.2108/zsj.30.92

    Google Scholar 

  • Horváthová T, Cooney CR, Fitze PS, Oksanen TA, Jelić D, Ghira I, Tobias U, Jandzik D (2013) Length of activity season drives geographic variation in body size of a widely distributed lizard. Ecol Evol 3:2424–2442. doi:10.1002/ece3.613

    Article  Google Scholar 

  • Iraeta P, Monasterio C, Salvador A, Díaz JA (2006) Mediterranean hatchling lizards grow faster at higher altitude: a reciprocal transplant experiment. Funct Ecol 20:865–872. doi:10.1111/j.1365-2435.2006.01162.x

    Article  Google Scholar 

  • Iraeta P, Salvador A, Díaz JA (2012) Life-history traits of two Mediterranean lizard populations: a possible example of countergradient covariation. Oecologia 172:167–176. doi:10.1007/s00442-012-2492-8

    Article  PubMed  Google Scholar 

  • Jones SM, Ballinger RE, Porter WP (1987) Physiological and environmental sources of variation in reproduction: prairie lizards in a food rich environment. Oikos 48:325–335. doi:10.2307/3565521

    Article  Google Scholar 

  • Jordan MA, Snell HL (2002) Life history trade-offs and phenotypic plasticity in the reproduction of Galapagos lava lizards (Microlophus delanonis). Oecologia 130:44–52. doi:10.1007/s00442076100776

    Article  Google Scholar 

  • Kaliontzopoulou A, Pinho C, Harris DJ, Carretero MA (2011) When cryptic diversity blurs the picture: a cautionary tale from Iberian and North African Podarcis wall lizards. Biol J Linn Soc 103:779–800. doi:10.1111/j.1095-8312.2011.01703.x

    Article  Google Scholar 

  • Kaliontzopoulou A, Carretero MA, Llorente GA (2012) Morphology of the Podarcis wall lizards (Squamata: lacertidae) from the Iberian Peninsula and North Africa: patterns of variation in a putative cryptic species complex. Zool J Linn Soc 164:173–193. doi:10.1111/j.1096-3642.2011.00760.x

    Article  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277. doi:10.1146/annurev.ecolsys.27.1.237

    Article  Google Scholar 

  • Lorenzon P, Clobert J, Oppliger A, John-Alder H (1999) Effect of water constraint on growth, activity and body temperature of yearling common lizard (Lacerta vivipara). Oecologia 118:423–430. doi:10.1007/s004420050744

    Article  Google Scholar 

  • Lorenzon P, Clobert J, Massot M (2001) The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution 55:392–404. doi:10.1111/j.0014-3820.2001.tb01302.x

    Article  CAS  PubMed  Google Scholar 

  • Losos JB, Creer DA, Glossip D, Goelner R, Hampton A, Roberts G, Haskell N, Taylor P, Ettling J (2000) Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54:301–305. doi:10.1554/0014-3820(2000)054[0301:EIOPPI]2.0.CO;2

    CAS  PubMed  Google Scholar 

  • Martin J, López P (2006) Interpopulational differences in chemical composition and chemosensory recognition of femoral gland secretions of male lizards Podarcis hispanica: implications for sexual isolation in a species complex. Chemoecology 16:31–38. doi:10.1007/s00049-005-0326-4

    Article  CAS  Google Scholar 

  • Mayhew WW (1963) Reproduction in the granite spiny lizard, Sceloporus orcutti. Copeia 1963:144–152. doi:10.2307/1441282

    Article  Google Scholar 

  • Morrison C, Hero JM (2003) Geographic variation in life-history characteristics of amphibians: a review. J Anim Ecol 72:270–279. doi:10.1046/j.1365-2656.2003.00696.x

    Article  Google Scholar 

  • Nahal I (1981) The Mediterranean climate from a biological viewpoint. In: di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 63–86

    Google Scholar 

  • Niewiarowski PH (2001) Energy budgets, growth rates, and thermal constraints: toward an integrative approach to the study of life-history variation. Am Nat 157:421–433. doi:10.1086/319321

    Article  CAS  PubMed  Google Scholar 

  • Niewiarowski PH, Roosenburg W (1993) Reciprocal transplant reveals sources of variation in growth rates of the lizard Sceloporus undulatus. Ecology 74:1992–2002. doi:10.2307/1940842

    Article  Google Scholar 

  • Olsson M, Shine R (1997) The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early clutches are better. J Evol Biol 10:369–381. doi:10.1046/j.14209101.1997.10030369.x

    Article  Google Scholar 

  • Palkovacs EP (2003) Explaining adaptive shifts in body size on islands: a life history approach. Oikos 103:37–44. doi:10.1034/j.1600-0706.2003.12502.x

    Article  Google Scholar 

  • Pérez-Mellado V (1998) Podarcis hispanica. In: Ramos MA, et al. (eds) Reptiles. Fauna Iberica Mus Nac Cienc Nat CSIC Madr 10: 258–272

  • Pinho C, Harris DJ, Ferrand N (2007) Comparing patterns of nuclear and mitochondrial divergence in a cryptic species complex: the case of Iberian and North African wall lizards (Podarcis, Lacertidae). Biol J Linn Soc 91:121–133. doi:10.1111/j.1095-8312.2007.00774.x

    Article  Google Scholar 

  • Renoult JP, Geniez P, Bacquet P, Benoit L, Crochet PA (2009) Morphology and nuclear markers reveal extensive mitochondrial introgressions in the Iberian wall lizard species complex. Mol Ecol 18:4298–4315. doi:10.1111/j.1365-294X.2009.04351.x

    Article  CAS  PubMed  Google Scholar 

  • Roff DA (1980) Optimizing development time in a seasonal environment: the “ups and downs” of clinal variation. Oecologia 45:202–208

    Article  Google Scholar 

  • Roff DA (1986) Predicting body size with life history models. Bioscience 36:316–323

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman and Hall, New York

    Google Scholar 

  • Sá-Sousa P, Vicente L, Crespo E (2002) Morphological variability of Podarcis hispanica (Sauria: lacertidae) in Portugal. Amphib-Rept 23:55–69. doi:10.1163/156853802320877627

    Article  Google Scholar 

  • Searle SR, Casella G, Mccullock CE (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  • Sears MW (2005) Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity. Oecologia 143:25–36. doi:10.1007/s00442-004-1767-0

    Article  PubMed  Google Scholar 

  • Sears MW, Angilletta MJ Jr (2003) Life history variation in the sagebrush lizard: phenotypic plasticity or local adaptation? Ecology 84:1624–1634. doi:10.1890/00129658(2003)084[1624:LVITSL]2.0.CO;2

    Article  Google Scholar 

  • Sistrom M, Edwards DL, Donnellan S, Hutchinson M (2012) Morphological differentiation correlates with ecological but not with genetic divergence in a Gehyra gecko. J Evol Biol 25:647–660. doi:10.1111/j.1420-9101.2012.02460.x

    Article  PubMed  Google Scholar 

  • Stamps JA, Tanaka S (1981) The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology 62:33–40. doi:10.2307/1936665

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87:476–486. doi:10.1007/s001140050763

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC, Koella JC (1986) The evolution of phenotypic plasticity in life history traits: predictions of reaction norms for age and size at maturity. Evolution 40:893–913

    Article  Google Scholar 

  • Steindachner F (1870) Herpetologische notizen. II. Über einige neue oder seltene Reptilien des Wiener Museums. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien. Math-Naturwissensch 62:336–350

    Google Scholar 

  • Telemeco RS, Radder RS, Baird TA, Shine R (2010) Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc 100:642–655. doi:10.1111/j.1095-8312.2010.01439.x

    Article  Google Scholar 

  • Travis J (1994) Ecological genetics of life-history traits: variation and its evolutionary significance. In: Real LA (ed) Ecological genetics. Princeton University Press, Princeton, pp 171–204

    Google Scholar 

  • Van Damme R, Aerts P, Vanhooydonck B (1997) No trade-off between sprinting and climbing in two populations of the lizard Podarcis hispanica (Reptilia: lacertidae). Biol J Linn Soc 60:493–503. doi:10.1111/j.1095-8312.1997.tb01508.x

    Article  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522. doi:10.2307/2408649

    Article  Google Scholar 

  • Warner DA, Shine R (2009) Maternal and environmental effects on offspring phenotypes in an oviparous lizard: do field data corroborate laboratory data? Oecologia 161:209–220. doi:10.1007/s00442-009-1366-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for helpful comments, Jose A. Díaz for his statistical expertise and advice, Elena Fraile for her support in field campaigns and El Ventorrillo MNCN Field Station for use of their facilities. Financial support was provided by the project MICIIN-CGL2011-24150/BOS, and by a Pre-JAE grant from CSIC to J. O. Captures and experiments of lizards were performed under license from the Environmental Agency of Madrid Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Ortega.

Additional information

Communicated by Raoul Van Damme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, J., López, P. & Martín, J. Altitudinally divergent adult phenotypes in Iberian wall lizards are not driven by egg differences or hatchling growth rates. Oecologia 177, 357–366 (2015). https://doi.org/10.1007/s00442-014-3185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3185-2

Keywords

Navigation