Skip to main content

Advertisement

Log in

Does morphology predict trophic position and habitat use of ant species and assemblages?

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

A functional traits-based theory of organismal communities is critical for understanding the principles underlying community assembly, and predicting responses to environmental change. This is particularly true for terrestrial arthropods, of which only 20 % are described. Using epigaeic ant assemblages, we asked: (1) can we use morphological variation among species to predict trophic position or preferred microhabitat; (2) does the strength of morphological associations suggest recent trait divergence; (3) do environmental variables at site scale predict trait sets for whole assemblages? We pitfall-trapped ants from a revegetation chronosequence and measured their morphology, trophic position [using C:N stoichiometry and stable isotope ratios (δ)] and characteristics of microhabitat and macrohabitat. We found strong associations between high trophic position (low C:N and high δ15N) in body tissue and morphological traits: predators were larger, had more laterally positioned eyes, more physical protection and tended to be monomorphic. In addition, morphological traits were associated with certain microhabitat features, e.g. smaller heads were associated with the bare ground microhabitat. Trait-microhabitat relationships were more pronounced when phylogenetic adjustments were used, indicating a strong influence of recent trait divergences. At the assemblage level, our fourth corner analysis revealed associations between the prevalence of traits and macrohabitat, although these associations were not the same as those based on microhabitat associations. This study shows direct links between species-level traits and both diet and habitat preference. Trait-based prediction of ecological roles and community structure is thus achievable when integrating stoichiometry, morphology and phylogeny, but scale is an important consideration in such predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145

    Article  CAS  PubMed  Google Scholar 

  • Andrew NR, et al. (2013) Assessing insect responses to climate change: what are we testing for? Where should we be heading? PeerJ 1:e11

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnan X, Cerda X, Rodrigo A, Retana J (2013) Response of ant functional composition to fire. Ecography 36:1182–1192. doi:10.1111/j.1600-0587.2013.00155.x

    Article  Google Scholar 

  • Barton PS, Gibb H, Manning AD, Lindenmayer DB, Cunningham SA (2011) Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biol J Linn Soc 102:301–310. doi:10.1111/j.1095-8312.2010.01580.x

    Article  Google Scholar 

  • Bihn JH, Gebauer G, Brandl R (2010) Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782–792

    Article  PubMed  Google Scholar 

  • Blackburn TM, Gaston KJ (1998) Some methodological issues in macroecology. Am Nat 151:68–83. doi:10.1086/286103

    Article  CAS  PubMed  Google Scholar 

  • Blüthgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435

    Article  PubMed  Google Scholar 

  • Brown AM, Warton DI, Andrew NR, Binns M, Cassis G, Gibb H (2014) The fourth-corner solution—using predictive models to understand how species traits interact with the environment. Methods Ecol Evol 5:344–352

    Article  Google Scholar 

  • Cerdá X, Retana J, Cros S (1997) Thermal disruption of transitive hierarchies in Mediterranean ant communities. J Anim Ecol 66:363–374

    Article  Google Scholar 

  • Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc B 367:1615–1627. doi:10.1098/rstb.2011.0422

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169

    Article  PubMed  Google Scholar 

  • Cornwell WK et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Davidson DW (2005) Ecological stoichiometry of ants in a New World rain forest. Oecologia 142:221–231

    Article  PubMed  Google Scholar 

  • DeNiro MJ, Epstein S (1979) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Diamond SE et al (2012) A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93:2305–2312

    Article  PubMed  Google Scholar 

  • Eisner T (1957) A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bull Mus Comp Zool 116:429–490

    Google Scholar 

  • Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size–climate relationships of European spiders. J Biogeogr 37:477–485

    Article  Google Scholar 

  • Fagan WF et al (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802. doi:10.1086/343879

    Article  PubMed  Google Scholar 

  • Feener DH, Lighton JRB, Bartholomew GA (1988) Curvilinear allometry, energetics and foraging ecology: a comparison of leaf-cutting ants and army ants. Funct Ecol 2:509–520. doi:10.2307/2389394

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fowler HG, Forti LC, Brandao CRF, Delabie JHC, Vasconcelos HL (1991) Ecologia nutricional de formigas. In: Panizzi AR, Parra JRP (eds) Ecologia nutricional de insetos. Manole, São Paulo, pp 131–223

    Google Scholar 

  • Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22:1367–1375. doi:10.1111/j.1420-9101.2009.01757.x

    Article  CAS  PubMed  Google Scholar 

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703

    Article  PubMed  Google Scholar 

  • Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Garland T, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39:374–388

    Google Scholar 

  • Gibb H, Cunningham SA (2011) Habitat contrasts reveal a shift in the trophic position of ant assemblages. J Anim Ecol 80:119–127

    Article  PubMed  Google Scholar 

  • Gibb H, Cunningham SA (2013) Restoration of trophic structure in an assemblage of omnivores, considering a revegetation chronosequence. J Appl Ecol 50:449–458. doi:10.1111/1365-2664.12054

    Article  Google Scholar 

  • Gibb H, Parr CL (2010) How does habitat complexity affect ant foraging success? A test of functional responses on three continents. Oecologia 164:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Gibb H, Parr CL (2013) Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS One 8:e64005. doi:10.1371/journal.pone.0064005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibb H, Ball JP, Atlegrim O, Johansson T, Hjältén J, Danell K (2005) The effects of management on coarse woody debris volume and quality in boreal forests in northern Sweden. Scand J For Res 20:213–222

    Article  Google Scholar 

  • Greenslade PJM (1973) Sampling ants with pitfall traps: digging-in effects. Insect Soc 20:343–353

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Kaspari M (1993) Body-size and microclimate use in Neotropical granivorous ants. Oecologia 96:500–507

    Article  Google Scholar 

  • Langlands PR, Brennan KEC, Framenau VW, Main BY (2011) Predicting the post-fire responses of animal assemblages: testing a trait-based approach using spiders. J Anim Ecol 80:558–568

    Article  PubMed  Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Michaud JP, Grant AK (2003) Intraguild predation among ladybeetles and a green lacewing: do the larval spines of Curinus coeruleus (Coleoptera : coccinellidae) serve a defensive function? Bull Entomol Res 93:499–505. doi:10.1079/Ber2003269

    Article  CAS  PubMed  Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    Article  CAS  PubMed  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, NJ

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (d15N and d13C) tell about the food web of soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281

    Article  PubMed  Google Scholar 

  • Sarty M, Abbott KL, Lester PJ (2006) Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149:465–473

    Article  CAS  PubMed  Google Scholar 

  • Shattuck SO (1999) Australian Ants: their biology and identification. CSIRO, Collingwood

    Google Scholar 

  • Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814. doi:10.1126/science.1131344

    Article  CAS  PubMed  Google Scholar 

  • Silva RR, Brandão CRF (2010) Morphological patterns and community organization in leaf-litter ant assemblages. Ecol Monogr 80:107–124

    Article  Google Scholar 

  • Stoklosa J, Gibb H, Warton DI (2014) Fast forward selection for generalized estimating equations with a large number of predictor variables. Biometrics 70:110–120. doi:10.1111/biom.12118

    Article  PubMed  Google Scholar 

  • Tillberg CV, Mccarthy DP, Dolezal AG, Suarez AV (2006) Measuring the trophic ecology of ants using stable isotopes. Insect Soc 53:65–69

    Article  Google Scholar 

  • Weber NA (1938) The biology of the fungus-growing ants. Part 4. Additional new forms. Part 5. The Attini of Bolivia. Rev Entomol 9:154–206

    Google Scholar 

  • Weiser MD, Kaspari M (2006) Ecological morphospace of new world ants. Ecol Entomol 31:131–142

    Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Wiescher PT, Pearce-Duvet JMC, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074. doi:10.1007/s00442-012-2262-7

    Article  PubMed  Google Scholar 

  • Wilson EO (1953) The origin and evolution of polymorphism in ants. Q Rev Biol 28:136–156

    Article  CAS  PubMed  Google Scholar 

  • Wittlinger M, Wolf H, Wehner R (2007) Hair plate mechanoreceptors associated with body segments are not necessary for three-dimensional path integration in desert ants, Cataglyphis fortis. J Exp Biol 210:375–382. doi:10.1242/Jeb.02674

    Article  PubMed  Google Scholar 

  • Yates ML, Andrew NR, Binns M, Gibb H (2014) Morphological traits: evidence of predictable responses to habitat characteristics across bio-regions. PeerJ 2:e271

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N. Banks, K. Pullen, E. Finlay and L. Garrett for help with field work and M. Cosgrove for assistance in the laboratory. We are grateful to the farmers of Murrumbateman, Bungendore and Boorowa, who allowed us to work on their land and Greening Australia for providing contacts. S. Shattuck kindly provided ant identifications. This project was supported through an Office of the Chief Executive postdoctoral fellowship to H. G. and an Australian Research Council Discovery Project (DP0985886) to D. I. W., N. R. A. and H. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gibb.

Additional information

Communicated by Konrad Fiedler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibb, H., Stoklosa, J., Warton, D.I. et al. Does morphology predict trophic position and habitat use of ant species and assemblages?. Oecologia 177, 519–531 (2015). https://doi.org/10.1007/s00442-014-3101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3101-9

Keywords

Navigation