Skip to main content
Log in

Consequences of induced hatching plasticity depend on predator community

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Many prey species face trade-offs in the timing of life history switch points like hatching and metamorphosis. Costs associated with transitioning early depend on the biotic and abiotic conditions found in the subsequent life stage. The red-eyed treefrog, Agalychnis callidryas, faces risks from predators in multiple, successive life stages, and can hatch early in response to mortality threats at the egg stage. Here we tested how the consequences of life history plasticity, specifically early hatching in response to terrestrial egg predators, depend on the assemblage of aquatic larval predators. We predicted that diverse predator assemblages would impose lower total predation pressure than the most effective single predator species and might thereby reduce the costs of hatching early. We then conducted a mesocosm experiment where we crossed hatchling phenotype (early vs. normal hatching) with five larval-predator environments (no predators, either waterbugs, dragonflies, or mosquitofish singly, or all three predator species together). The consequences of hatching early varied across predator treatments, and tended to disappear through time in some predation treatments, notably the waterbug and diverse predator assemblages. We demonstrate that the fitness costs of life history plasticity in an early life stage depend critically on the predator community composition in the next stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adolph EF (1931) Body size as a factor in metamorphosis of tadpoles. Biol Bull 61:376–386

    Article  Google Scholar 

  • Altwegg R, Reyer HU (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57:872–882

    Article  PubMed  Google Scholar 

  • Aubin-Horth N, Letcher NB, Hofmann HA (2009) Gene-expression signatures of Atlantic salmon’s plastic life cycle. Gen Comp Endocrinol 163:278–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baber MJ, Babbitt KJ (2004) Influence of habitat complexity on predator-prey interactions between the fish (Gambusia holbrooki) and tadpoles of Hyla squirella and Gastrophryne carolinensis. Copeia 1004:173–177

    Article  Google Scholar 

  • Bates D, Maechler M (2009) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-32-2

  • Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst 35:651–673

    Article  Google Scholar 

  • Blaustein L (1997) Non-consumptive effects of larval Salamandra on crustacean prey: can eggs detect predators? Oecologia 110:212–217

    Article  Google Scholar 

  • Buckley CR, Michael SF, Irschick DJ (2005) Early hatching decreases jumping performance in a direct-developing frog, Eleutherodactylus coqui. Funct Ecol 19:67–72

    Article  Google Scholar 

  • Caraco T, Wolf LL (1975) Ecological determinants of group size of foraging lions. Am Nat 109:343–352

    Article  Google Scholar 

  • Chivers DP, Kiesecker JM, Marco A, DeVito J, Anderson MT, Blaustein AR (2001) Predator-induced life history changes in amphibians: egg predation induces hatching. Oikos 92:135–142

    Article  Google Scholar 

  • Christy JH (2011) Timing of hatching and release of larvae by brachyuran crabs: patterns, adaptive significance, and control. Integr Comp Biol 51:62–72

    Article  PubMed  Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Cornell University Press, Ithaca

    Google Scholar 

  • Dahl E, Orizaola G, Nicieza AG, Laurila A (2012) Time constraints and flexibility of growth strategies: geographic variation in catch-up growth responses in amphibian larvae. J Anim Ecol 81:1233–1243

    Article  PubMed  Google Scholar 

  • De Block M, Stoks R (2008) Compensatory growth and oxidative stress in a damselfly. Proc R Soc B 275:781–785

    Article  PubMed Central  PubMed  Google Scholar 

  • Doody JS (2011) Environmentally cued hatching in reptiles. Integr Comp Biol 51:49–61

    Article  CAS  PubMed  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  PubMed  Google Scholar 

  • Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  • Griffiths D (1980) Foraging costs and relative prey size. Am Nat 116:743–752

    Article  Google Scholar 

  • Hector KL, Nakagawa S (2012) Quantitative analysis of compensatory and catch-up growth in diverse taxa. J Anim Ecol 81:583–593

    Article  PubMed  Google Scholar 

  • Hentschel BT, Emlet RB (2000) Metamorphosis of barnacle nauplii: effects of food variability and a comparison with amphibian models. Ecology 81:3495–3508

    Article  Google Scholar 

  • Holland JG, Guidat FS, Bourke AFG (2013) Queen control of a key life-history event in a eusocial insect. Biol Lett 9:20130056

    Article  PubMed Central  PubMed  Google Scholar 

  • Juliano SA, Olson JR, Murrell EG, Hatle JD (2004) Plasticity and canalization of insect reproduction testing alternative models of life history. Ecology 85:2986–2996

    Article  Google Scholar 

  • Komak S, Crossland MR (2000) An assessment of the introduced mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings, and tadpoles of native and nonnative anurans. Wildl Res 27:185–189

    Article  Google Scholar 

  • Kusch RC, Chivers DP (2004) The effects of crayfish predation on phenotypic and life-history variation in fathead minnows. Can J Zool 82:917–921

    Article  Google Scholar 

  • Li D (2002) Hatching responses of subsocial spitting spiders to predation risk. Proc R Soc B 269:2155–2161

    Article  PubMed Central  PubMed  Google Scholar 

  • Mangle M, Munch SB (2005) A life-history perspective on the short- and long-term consequences of compensatory growth. Am Nat 166:E155–E176

    Article  Google Scholar 

  • Martin K, Bailey K, Moravek C, Carlson K (2011) Taking the plunge: California grunion embryos emerge rapidly with environmentally cued hatching (ECH). Integr Comp Biol 51:26–37

    Article  PubMed  Google Scholar 

  • McCoy MW, Bolker BM, Warkentin K, Vonesh JR (2011) Predicting predation through prey ontogeny using size-dependent functional response models. Am Nat 177:752–766

    Article  PubMed  Google Scholar 

  • McPeek MA, Crowley PH (1987) The effects of density and relative size on the aggressive behaviour, movement and feeding of damselfly larvae (Odonata: Coenagrionidae). Anim Behav 35:1051–1061

    Article  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260

    Article  PubMed  Google Scholar 

  • Miner BG, Donovan DA, Andrews KE (2010) Should I stay or should I go: predator- and conspecific induced hatching in a marine snail. Oecologia 163:69–78

    Article  PubMed  Google Scholar 

  • Morgan IJ, Metcalfe NB (2001) Deferred costs of compensatory growth after autumnal food shortage in juvenile salmon. Proc R Soc B 268:295–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman RA (1992) Adaptive plasticity in amphibian metamorphosis. Bioscience 42:671–678

    Article  Google Scholar 

  • Ohba SY, Hidaka K, Sasaki M (2006) Notes on paternal care and sibling cannibalism in the giant water bug, Lethocerus deyrolli (Heteroptera: Belostomatidae). Entomol Sci 9:1–5

    Article  Google Scholar 

  • Orizaola G, Dahl E, Laurila A (2010) Compensating for delayed hatching across consecutive life-history stages in an amphibian. Oikos 119:980–987

    Article  Google Scholar 

  • Peckarsky BL, Taylor BW, McIntosh AR, McPeek MA, Lytle DA (2001) Variation in mayfly size at metamorphosis as a developmental response to risk of predation. Ecology 82:740–757

    Article  Google Scholar 

  • Pruthi HM (1925) Moulting of insects. Nature 116:938

    Article  Google Scholar 

  • Rasband WS (1997) ImageJ. U. S. National Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij/, 1997–2012

  • Relyea RA (2003) How prey respond to combined predators: a review and an empirical test. Ecology 84:1827–1839

    Article  Google Scholar 

  • Rowe L, Ludwig D (1991) Size and timing of metamorphosis in complex life cycles: time constraints and variation. Ecology 72:413–427

    Article  Google Scholar 

  • Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426

    Article  PubMed  Google Scholar 

  • Sih A, Moore RD (1993) Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am Nat 142:947–960

    Article  CAS  PubMed  Google Scholar 

  • Sih A, Crowley PH, McPeek MA, Petranka JW, Strohmeier K (1985) Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst 16:269–312

    Article  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  CAS  PubMed  Google Scholar 

  • Smith RL (1974) Life history of Abedus herberti in Central Arizona (Hemiptera: Belostomatidae). Psyche 81:272–283

    Article  Google Scholar 

  • Smith GR, Fortune DT (2009) Hatching plasticity of wood frog (Rana sylvatica) eggs in response to mosquitofish (Gambusia affinis) cues. Herpetol Conserv Biol 4:43–47

    Google Scholar 

  • Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

    Article  Google Scholar 

  • Stoks R, De Block M, McPeek MA (2006) Physiological costs of compensatory growth in a damselfly. Ecology 87:1566–1574

    Article  PubMed  Google Scholar 

  • Touchon JC, Warkentin KM (2010) Short- and long-term effects of the abiotic egg environment on viability, development and vulnerability to predators of a Neotropical anuran. Funct Ecol 24:566–575

    Article  Google Scholar 

  • Touchon JC, Gomez-Mestre I, Warkentin KM (2006) Hatching plasticity in two temperate anurans: responses to a pathogen and predation cues. Can J Zool 84:556–563

    Article  Google Scholar 

  • Touchon JC, Urbina J, Warkentin KM (2011) Habitat-specific constraints on induced hatching in a tree frog with reproductive mode plasticity. Behav Ecol 22:169–175

    Article  Google Scholar 

  • Touchon JC, McCoy MW, Vonesh JR, Warkentin KM (2013) Effects of hatching plasticity carry over through metamorphosis in red-eyed tree frogs. Ecology 94:850–860

    Article  Google Scholar 

  • Urban MC (2007) The growth-predation risk trade-off under a growing gape-limited predation threat. Ecology 88:2587–2597

    Article  PubMed  Google Scholar 

  • Van Buskirk J (1992) Competition, cannibalism, and size-class dominance in a dragonfly. Oikos 65:455–464

    Article  Google Scholar 

  • van Uitregt VO, Hurst TP, Wilson RS (2012) Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. J Anim Ecol 81:108–115

    Article  PubMed  Google Scholar 

  • Vonesh JR, Bolker BM (2005) Compensatory larval responses shift trade-offs associated with predator-induced hatching plasticity. Ecology 86:1580–1591

    Article  Google Scholar 

  • Warkentin KM (1995) Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc Natl Acad Sci USA 92:3507–3510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warkentin KM (1999) Effects of hatching age on development and hatchling morphology in the red-eyed tree frog, Agalychnis callidryas. Biol J Linn Soc 68:443–470

    Google Scholar 

  • Warkentin KM (2000) Wasp predation and wasp-induced hatching of red-eyed tree frog eggs. Anim Behav 60:503–510

    Article  PubMed  Google Scholar 

  • Warkentin KM (2011a) Environmentally cued hatching across taxa: embryos respond to risk and opportunity. Integr Comp Biol 51:14–25

    Article  PubMed  Google Scholar 

  • Warkentin KM (2011b) Plasticity of hatching in amphibians: evolution, trade-offs, cues and mechanisms. Integr Comp Biol 51:111–127

    Article  PubMed  Google Scholar 

  • Warkentin KM, Caldwell MS (2009) Assessing risk: embryos, information, and escape hatching. In: Dukas R, Ratcliffe J (eds) Cognitive ecology. II. The evolutionary ecology of learning, memory, and information use. University of Chicago Press, Chicago, pp 177–200

    Chapter  Google Scholar 

  • Werner EE (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat 128:319–341

    Article  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425

    Article  Google Scholar 

  • Willink B, Palmer MS, Landberg T, Vonesh JR, Warkentin KM (2013) Environmental context shapes immediate and cumulative costs of risk-induced early hatching. Evol Ecol. doi:10.1007/s10682-013-9661-z

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin Heidelberg New York

Download references

Acknowledgments

We thank the Autoridad Nacional del Ambiente de Panamá for permission to conduct this research (permit SC/A-73-09). We would like to thank M. Hughey, K. Warkentin, and M. McCoy for their advice and assistance. L. Belden, as well as the reviewers and editors, made helpful suggestions to improve the manuscript. J. M. W. and B. M. were supported by a Research Opportunity Award from the National Science Foundation, stemming from NSF grant 0717220 to J. R. V; J. C. T. was supported by NSF grant IIA-1064566. Virginia Commonwealth University, Radford University, and the Smithsonian Tropical Research Institute also provided funding or support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Wojdak.

Additional information

Communicated by Anssi Laurila.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojdak, J.M., Touchon, J.C., Hite, J.L. et al. Consequences of induced hatching plasticity depend on predator community. Oecologia 175, 1267–1276 (2014). https://doi.org/10.1007/s00442-014-2962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2962-2

Keywords

Navigation