Skip to main content
Log in

A mammalian gonadotropin-inhibitory hormone homolog RFamide-related peptide 3 regulates pain and anxiety in mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

RFamide-related peptide (RFRP) is a homologous neuropeptide to gonadotropin-inhibitory hormone (GnIH), which is a hypothalamic neuropeptide that negatively regulates the hypothalamic-pituitary–gonadal axis. RFRP/GnIH is thought to be the mediator of stress because various stressors increase RFRP/GnIH mRNA expression and/or RFRP/GnIH neuronal activities. RFRP/GnIH may also directly regulate behavior, because RFRP/GnIH neuronal fibers and RFRP/GnIH receptor are widely expressed in the brain. Here, we create a RFRP/GnIH knockout (GnIH-KO) mice and conduct various behavioral tests. Dense RFRP/GnIH neuronal fibers are located in the limbic system and broad areas in the thalamus, hypothalamus, and midbrain in wild-type mice but not in RFRP/GnIH-KO mice. Spatial working memory is not improved in GnIH-KO mice as shown by Y-maze test. GnIH-KO mice perform intensive wheel running exercise for several hours after light-off. Hot plate test shows that GnIH-KO mice have decreased sensitivity to pain and central administration of RFRP3 to GnIH-KO mice recovers pain sensitivity. Elevated plus maze test shows that GnIH-KO mice have decreased level of anxiety and central administration of RFRP3 to GnIH-KO mice recovers anxiety level. These results indicate that RFRP3 regulates pain and anxiety in mice. RFRP3 may be involved in the negative regulation of spontaneous activity in addition to negatively regulating the reproductive neuroendocrine axis in stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bahry MA, Yang H, Tran PV, Do PH, Han G, Eltahan HM, Chowdhury VS, Furuse M (2018) Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides 71:90–96

    Article  CAS  Google Scholar 

  • Benton NA, Russo KA, Brozek JM, Andrews RJ, Kim VJ, Kriegsfeld LJ, Schneider JE (2018) Food restriction-induced changes in motivation differ with stages of the estrous cycle and are closely linked to RFamide-related peptide-3 but not kisspeptin in Syrian hamsters. Physiol Behav 190:43–60

    Article  CAS  Google Scholar 

  • Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, Smith KE, Tamm JA, Boteju LW, Lakhlani PP, Raddatz R, Yao WJ, Ogozalek KL, Boyle N, Kouranova EV, Quan Y, Vaysse PJ, Wetzel JM, Branchek TA, Gerald C, Borowsky B (2000) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem 275:39324–39331

    Article  CAS  Google Scholar 

  • Botchkina GI, Morin LP (1995) Organization of permanent and transient neuropeptide Y-immunoreactive neuron groups and fiber systems in the developing hamster diencephalon. J Comp Neurol 357:573–602

    Article  CAS  Google Scholar 

  • Brown S, Schäfer E (1888) An investigation into the functions of the occipital and temporal lobes of the monkey’s brain. Philos Trans R Soc Lond B 179:303–327

    Article  Google Scholar 

  • Calhoon GG, Tye KM (2015) Resolving the neural circuits of anxiety. Nat Neurosci 18:1394–1404

    Article  CAS  Google Scholar 

  • Calisi RM, Rizzo NO, Bentley GE (2008) Seasonal differences in hypothalamic EGR-1 and GnIH expression following capture-handling stress in house sparrows (Passer domesticus). Gen Comp Endocrinol 157:283–287

    Article  CAS  Google Scholar 

  • Chowdhury VS, Tomonaga S, Nishimura S, Tabata S, Cockrem JF, Tsutsui K, Furuse M (2012) Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comp Biochem Physiol A Mol Integr Physiol 162:227–233

    Article  CAS  Google Scholar 

  • Clarke IJ, Bartolini D, Conductier G, Henry BA (2016) Stress increases gonadotropin inhibitory hormone cell activity and input to GnRH cells in ewes. Endocrinology 157:4339–4350

    Article  CAS  Google Scholar 

  • D’Este L, Casini A, Pontieri FE, Renda TG (2006) Changes in neuropeptide FF and NPY immunohistochemical patterns in rat brain under heroin treatment. Brain Res 1083:151–158

    Article  CAS  Google Scholar 

  • Elhabazi K, Humbert JP, Bertin I, Schmitt M, Bihel F, Bourguignon JJ, Bucher B, Becker JA, Sorg T, Meziane H, Petit-Demoulière B, Ilien B, Simonin F (2013) Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 75:164–171

    Article  CAS  Google Scholar 

  • Fukusumi S, Habata Y, Yoshida H, Iijima N, Kawamata Y, Hosoya M, Fujii R, Hinuma S, Kitada C, Shintani Y, Suenaga M, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M (2001) Characteristics and distribution of endogenous RFamide-related peptide-1. Biochim Biophys Acta 1540:221–232

    Article  CAS  Google Scholar 

  • George JT, Hendrikse M, Veldhuis JD, Clarke IJ, Anderson RA, Millar RP (2017) Effect of gonadotropin-inhibitory hormone on luteinizing hormone secretion in humans. Clin Endocrinol (oxf) 86:731–738

    Article  CAS  Google Scholar 

  • Geraghty AC, Muroy SE, Zhao S, Bentley GE, Kriegsfeld LJ, Kaufer D (2015) Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption. Elife 4:e04316

    Article  Google Scholar 

  • Gospodarska E, Kozak LP, Jaroslawska J (2019) Isolation and identification of endogenous RFamide-related peptides 1 and 3 in the mouse hypothalamus. J Neuroendocrinol 31:e12668

    Article  Google Scholar 

  • Gregg LC, Jung KM, Spradley JM, Nyilas R, Suplita RL 2nd, Zimmer A, Watanabe M, Mackie K, Katona I, Piomelli D, Hohmann AG (2012) Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. J Neurosci 32:9457–9468

    Article  CAS  Google Scholar 

  • Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, Fujii R, Watanabe T, Kikuchi K, Terao Y, Yano T, Yamamoto T, Kawamata Y, Habata Y, Asada M, Kitada C, Kurokawa T, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M (2000) New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2:703–708

    Article  CAS  Google Scholar 

  • Iwasa T, Matsuzaki T, Tungalagsuvd A, Munkhzaya M, Kawami T, Niki H, Kato T, Kuwahara A, Uemura H, Yasui T, Irahara M (2014) Hypothalamic Kiss1 and RFRP gene expressions are changed by a high dose of lipopolysaccharide in female rats. Horm Behav 66:309–316

    Article  CAS  Google Scholar 

  • Johnson MA, Tsutsui K, Fraley GS (2007) Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav 51:171–180

    Article  CAS  Google Scholar 

  • Kaewwongse M, Takayanagi Y, Onaka T (2011) Effects of RFamide-related peptide (RFRP)-1 and RFRP-3 on oxytocin release and anxiety-related behaviour in rats. J Neuroendocrinol 23:20–27

    Article  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013) Principles of Neural Science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Kirby ED, Geraghty AC, Ubuka T, Bentley GE, Kaufer D (2009) Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc Natl Acad Sci U S A 106:11324–11329

    Article  CAS  Google Scholar 

  • Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R (2006) Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci U S A 103:2410–2415

    Article  CAS  Google Scholar 

  • León S, García-Galiano D, Ruiz-Pino F, Barroso A, Manfredi-Lozano M, Romero-Ruiz A, Roa J, Vázquez MJ, Gaytan F, Blomenrohr M, van Duin M, Pinilla L, Tena-Sempere M (2014) Physiological roles of gonadotropin-inhibitory hormone signaling in the control of mammalian reproductive axis: studies in the NPFF1 receptor null mouse. Endocrinology 155:2953–2965

    Article  Google Scholar 

  • Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL Jr, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R, Austin CP (2001) Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 276:36961–36969

    Article  CAS  Google Scholar 

  • Lynch DR, Walker MW, Miller RJ, Snyder SH (1989) Neuropeptide Y receptor binding sites in rat brain: differential autoradiographic localizations with 125I-peptide YY and 125I-neuropeptide Y imply receptor heterogeneity. J Neurosci 9:2607–2619

    Article  CAS  Google Scholar 

  • Marek P, Yirmiya R, Liebeskind JC (1991) Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation. Brain Res 541:154–156

    Article  CAS  Google Scholar 

  • Paxinos G, Franklin K (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Academic press, Cambridge

    Google Scholar 

  • Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenröhr M, Pinilla L, van Noort PI, Tena-Sempere M (2010) Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 299:E39-46

    Article  CAS  Google Scholar 

  • Roumy M, Zajac JM (1998) Neuropeptide FF, pain and analgesia. Eur J Pharmacol 345:1–11

    Article  CAS  Google Scholar 

  • Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A 97:14731–14736

    Article  CAS  Google Scholar 

  • Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D, Matifas A, Mollereau C, Laurent P, Parmentier M, Kieffer BL, Bourguignon JJ, Simonnet G (2006) RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci U S A 103:466–471

    Article  CAS  Google Scholar 

  • Son YL, Ubuka T, Millar RP, Kanasaki H, Tsutsui K (2012) Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology 153:2332–2343

    Article  CAS  Google Scholar 

  • Son YL, Ubuka T, Narihiro M, Fukuda Y, Hasunuma I, Yamamoto K, Belsham DD, Tsutsui K (2014) Molecular basis for the activation of gonadotropin-inhibitory hormone gene transcription by corticosterone. Endocrinology 155:1817–1826

    Article  Google Scholar 

  • Son YL, Ubuka T, Soga T, Yamamoto K, Bentley GE, Tsutsui K (2016) Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7. FASEB J 30:2198–2210

    Article  CAS  Google Scholar 

  • Son YL, Ubuka T, Tsutsui K (2022) Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front Neuroendocrinol 64:100953

    Article  CAS  Google Scholar 

  • Thomas FSK, Higuchi Y, Ogawa S, Soga T, Parhar IS (2021) Acute social defeat stress upregulates gonadotrophin inhibitory hormone and its receptor but not corticotropin-releasing hormone and ACTH in the Male Nile Tilapia (Oreochromis niloticus). Peptides 138:170504

    Article  CAS  Google Scholar 

  • Tsutsui K, Bentley GE, Bedecarrats G, Osugi T, Ubuka T, Kriegsfeld LJ (2010) Review: gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front Neuroendocrinol 31:284–295

    Article  CAS  Google Scholar 

  • Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ (2000) A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 275:661–667

    Article  CAS  Google Scholar 

  • Ubuka T, Haraguchi S, Tobari Y, Narihiro M, Ishikawa K, Hayashi T, Harada N, Tsutsui K (2014) Hypothalamic inhibition of socio-sexual behaviour by increasing neuroestrogen synthesis. Nat Commun 5:3061

    Article  Google Scholar 

  • Ubuka T, Inoue K, Fukuda Y, Mizuno T, Ukena K, Kriegsfeld LJ, Tsutsui K (2012a) Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 153:373–385

    Article  CAS  Google Scholar 

  • Ubuka T, Lai H, Kitani M, Suzuuchi A, Pham V, Cadigan PA, Wang A, Chowdhury VS, Tsutsui K, Bentley GE (2009a) Gonadotropin-inhibitory hormone identification, cDNA cloning, and distribution in rhesus macaque brain. J Comp Neurol 517:841–855

    Article  CAS  Google Scholar 

  • Ubuka T, Mizuno T, Fukuda Y, Bentley GE, Wingfield JC, Tsutsui K (2013a) RNA interference of gonadotropin-inhibitory hormone gene induces aggressive and sexual behaviors in birds. Gen Comp Endocrinol 181:179–186

    Article  CAS  Google Scholar 

  • Ubuka T, Morgan K, Pawson AJ, Osugi T, Chowdhury VS, Minakata H, Tsutsui K, Millar RP, Bentley GE (2009b) Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PLoS ONE 4:e8400

    Article  Google Scholar 

  • Ubuka T, Mukai M, Wolfe J, Beverly R, Clegg S, Wang A, Hsia S, Li M, Krause JS, Mizuno T, Fukuda Y, Tsutsui K, Bentley GE, Wingfield JC (2012b) RNA interference of gonadotropin-inhibitory hormone gene induces arousal in songbirds. PLoS ONE 7:e30202

    Article  CAS  Google Scholar 

  • Ubuka T, Parhar IS, Tsutsui K (2018) Gonadotropin-inhibitory hormone mediates behavioral stress responses. Gen Comp Endocrinol 265:202–206

    Article  CAS  Google Scholar 

  • Ubuka T, Son YL, Bentley GE, Millar RP, Tsutsui K (2013b) Review: gonadotropin-inhibitory hormone (GnIH), GnIH receptor and cell signaling. Gen Comp Endocrinol 190:10–17

    Article  CAS  Google Scholar 

  • Ubuka T, Son YL, Tsutsui K (2016) Review: Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol 227:27–50

    Article  CAS  Google Scholar 

  • Ubuka T, Tsutsui K (2014) Evolution of gonadotropin-inhibitory hormone receptor and its ligand. Gen Comp Endocrinol 209:148–161

    Article  CAS  Google Scholar 

  • Ubuka T, Ukena K, Sharp PJ, Bentley GE, Tsutsui K (2006) Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail. Endocrinology 147:1187–1194

    Article  CAS  Google Scholar 

  • Ukena K, Iwakoshi E, Minakata H, Tsutsui K (2002) A novel rat hypothalamic RFamide-related peptide identified by immunoaffinity chromatography and mass spectrometry. FEBS Lett 512:255–258

    Article  CAS  Google Scholar 

  • Yang JA, Hughes JK, Parra RA, Volk KM, Kauffman AS (2018) Stress rapidly suppresses in vivo LH pulses and increases activation of RFRP-3 neurons in male mice. J Endocrinol 239:339–350

    Article  CAS  Google Scholar 

  • Yasumoto Y, Nakao R, Oishi K (2015) Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice. PLoS One 10:e0116476

  • Yin H, Ukena K, Ubuka T, Tsutsui K (2005) A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): identification, expression and binding activity. J Endocrinol 184:257–266

    Article  CAS  Google Scholar 

  • Yoshida H, Habata Y, Hosoya M, Kawamata Y, Kitada C, Hinuma S (2003) Molecular properties of endogenous RFamide-related peptide-3 and its interaction with receptors. Biochim Biophys Acta 1593:151–157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I sincerely thank Professor Kazuyoshi Tsutsui (Hiroshima University) who supported this study but passed away on September 16, 2021. I also thank Sonoko Okada, Misato Narihiro, Daiki Yamazaki, Ren Taguchi, Shiho Takezawa, Yuri Sato, and Dr. Yu Tahara (Waseda University) for their technical assistances, and Dr. Takefumi Kikusui (Azabu University) for his guidance of behavioral experiments. I thank RIKEN BRC, Dr. S. Noguchi (Meiji Institute of Health Science, Meiji Milk Products Co., Ltd.), and Dr. K. Nishimura (Kanagawa Academy of Science and Technology) for providing Nestin-cre system mouse (RBRC02412).

Funding

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (23570091 to TU; 15207007, 16086206, 18107002, 22132004, and 22227002 to Kazuyoshi Tsutsui).

Author information

Authors and Affiliations

Authors

Contributions

TU designed the study, performed experiments, and wrote the manuscript.

Corresponding author

Correspondence to Takayoshi Ubuka.

Ethics declarations

Ethical approval

The experimental protocols were approved by Waseda University licensing committees for genetic modification (WD17-015) and animal experiments (2017-A005). All procedures were performed in accordance with the Waseda University Safety Management Rules for Biological Experiment.

Informed consent

Not applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubuka, T. A mammalian gonadotropin-inhibitory hormone homolog RFamide-related peptide 3 regulates pain and anxiety in mice. Cell Tissue Res 391, 159–172 (2023). https://doi.org/10.1007/s00441-022-03695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03695-w

Keywords

Navigation