Skip to main content

Advertisement

Log in

Correlation of the regenerative potential of dermal fibroblasts in 2D culture with the biological properties of fibroblast-derived tissue spheroids

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo. However, the development of unbiassed quantitative criteria of the regenerative potential of 3D tissue spheroids in vitro before their in situ bioprinting remains to be investigated. Here it has been demonstrated for the first time that specific correlations exist between the regenerative potential of human dermal fibroblasts cultured in vitro as 2D cell monolayer with biological properties of 3D tissue spheroids fabricated from these fibroblasts. In vitro assessment of biological properties included diameter, spreading and fusion kinetics, and biomechanical properties of 3D tissue spheroids. This comprehensive characterization could be used to predict tissue spheroids’ regenerative potential in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arjoca S, Robu A, Neagu M, Neagu A (2022) Mathematical and computational models in spheroid-based biofabrication. Acta Biomater S1742–7061(22):00418–00424

    Google Scholar 

  • Bissell MJ (2017) Goodbye flat biology - time for the 3rd and the 4th dimensions. J Cell Sci 130(1):3–5

    Article  CAS  Google Scholar 

  • Chae S, Hong J, Hwangbo H, Kim G (2021) The utility of biomedical scaffolds laden with spheroids in various tissue engineering applications. Theranostics 11(14):6818–6832

    Article  CAS  Google Scholar 

  • Cole MA, Quan T, Voorhees JJ, Fisher GJ (2018) Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal 12:35–43

    Article  Google Scholar 

  • Cui H, Wang X, Wesslowski J, Tronser T, Rosenbauer J, Schug A, Davidson G, Popova AA, Levkin PA (2021) Assembly of multi-spheroid cellular architectures by programmable droplet merging. Adv Mater 33(4):e2006434

    Article  Google Scholar 

  • Cuvelier M, Pešek J, Papantoniou I, Ramon H, Smeets B (2021) Distribution and propagation of mechanical stress in simulated structurally heterogeneous tissue spheroids. Soft Matter 17(27):6603–6615

    Article  CAS  Google Scholar 

  • Fleming PA, Argraves WS, Gentile C, Neagu A, Forgacs G, Drake CJ (2010) Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev Dyn 239(2):398–406

    Article  Google Scholar 

  • Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  Google Scholar 

  • Foty RA, Pfleger CM, Forgacs G, Steinberg MS (1996) Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122(5):1611–1620

    Article  CAS  Google Scholar 

  • Fridenshteĭn AI, Deriglazova IF, Kulagina NN (1973) Cloning of cell-precursors of fibroblasts in monolayer cell cultures. Biull Eksp Biol Med 75:90–94

    Google Scholar 

  • Gryadunova AA, Koudan EV, Rodionov SA, Pereira FDAS, Meteleva NY, Kasyanov VA, Parfenov VA, Kovalev AV, Khesuani YD, Mironov VA, Bulanova EA (2020) Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres. Acta Biomater 118:141–152

    Article  CAS  Google Scholar 

  • Kosheleva NV, Efremov YM, Shavkuta BS, Zurina IM, Zhang D, Zhang Y, Minaev NV, Gorkun AA, Wei S, Shpichka AI, Saburina IN, Timashev PS (2020) Cell spheroid fusion: beyond liquid drops model. Sci Rep 10(1):12614

    Article  CAS  Google Scholar 

  • Koudan EV, Bulanova EA, Pereira FDAS, Parfenov VA, Kasyanov VA, Hesuani YD, Mironov VA (2016) Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Int J Bioprinting 2(1):45–52

    CAS  Google Scholar 

  • Kronemberger GS, Beatrici A, Dalmônico GML, Rossi AL, Miranda GASC, Boldrini LC, Mauro Granjeiro J, Baptista LS (2021) The hypertrophic cartilage induction influences the building-block capacity of human adipose stem/stromal cell spheroids for biofabrication. Artif Organs 45(10):1208–1218

    Article  CAS  Google Scholar 

  • Latsinik NV, Grosheva AG, Narovlianskiĭ AN, Pavlenko RG, Fridenshteĭn AI (1987) Clonal nature of fibroblast colonies formed by stromal bone marrow cells in culture. Biull Eksp Biol Med 103:356–358

    Article  CAS  Google Scholar 

  • Lebedinskaia OV, Gorskaia IF, Shuklina EI, Latsinik NV, Nesterenko VG (2004) Age changes in the numbers of stromal precursor cells in the animal bone marrow. Morfologiia 126:46–49

    CAS  Google Scholar 

  • Lee NH, Bayaraa O, Zechu Z, Kim HS (2021) Biomaterials-assisted spheroid engineering for regenerative therapy. BMB Rep 54(7):356–367

    Article  CAS  Google Scholar 

  • Lin RZ, Chou LF, Chien CC, Chang HY (2006) Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell Tissue Res 324(3):411–422

    Article  CAS  Google Scholar 

  • Lu N, Karlsen TV, Reed RK, Kusche-Gullberg M, Gullberg D (2014) Fibroblast α11β1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids. PLoS ONE 9(7):e103173

    Article  Google Scholar 

  • Mine S, Fortunel NO, Pageon H, Asselineau D (2008) Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS ONE 3(12):e4066

    Article  Google Scholar 

  • Nilsson Hall G, Rutten I, Lammertyn J, Eberhardt J, Geris L, Luyten FP, Papantoniou I (2021) Cartilaginous spheroid-assembly design considerations for endochondral ossification: towards robotic-driven biomanufacturing. Biofabrication 13(4). https://doi.org/10.1088/1758-5090/ac2208

  • Nolte SV, Xu W, Rennekampff HO, Rodemann HP (2008) Diversity of fibroblasts - a review on implications for skin tissue engineering. Cells Tissues Organs 187:165–176

    Article  Google Scholar 

  • Omelyanenko NP, Karalkin PA, Bulanova EA, Koudan EV, Parfenov VA, Rodionov SA, Knyazeva AD, Kasyanov VA, Babichenko II, Chkadua TZ, Khesuani YD, Gryadunova AA, Mironov VA (2020) Extracellular matrix determines biomechanical properties of chondrospheres during their maturation in vitro. Cartilage 11(4):521–531

    Article  CAS  Google Scholar 

  • Ong CS, Zhou X, Han J, Huang CY, Nashed A, Khatri S, Mattson G, Fukunishi T, Zhang H, Hibino N (2018) In vivo therapeutic applications of cell spheroids. Biotechnol Adv 36(2):494–505

    Article  CAS  Google Scholar 

  • Ongenae S, Cuvelier M, Vangheel J, Ramon H, Smeets B (2021) Activity-induced fluidization and arrested coalescence in fusion of cellular aggregates. Front Phys 9:649821

    Article  Google Scholar 

  • Parfenov VA, Koudan EV, Bulanova EA, Karalkin PA, Pereira DAS, F, Norkin NE, Knyazeva AD, Gryadunova AA, Petrov OF, Vasiliev MM, Myasnikov MI, Chernikov VP, Kasyanov VA, Marchenkov AY, Brakke K, Khesuani YD, Demirci U, Mironov VA, (2018) Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly. Biofabrication 10(3):034104

    Article  Google Scholar 

  • Parfenov VA, Khesuani YD, Petrov SV, Karalkin PA, Koudan EV, Nezhurina EK, Pereira FD, Krokhmal AA, Gryadunova AA, Bulanova EA, Vakhrushev IV, Babichenko II, Kasyanov V, Petrov OF, Vasiliev MM, Brakke K, Belousov SI, Grigoriev TE, Osidak EO, Rossiyskaya EI, Buravkova LB, Kononenko OD, Demirci U, Mironov VA (2020) Magnetic levitational bioassembly of 3D tissue construct in space. Sci Adv 6(29):eaba4174

  • Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM (2018) Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J Invest Dermatol 138(4):811–825

    Article  CAS  Google Scholar 

  • Shafiee A, Ghadiri E, Williams D, Atala A (2019) Physics of cellular self-assembly – a microscopic model and mathematical framework for faster maturation of bioprinted tissues. Bioprinting 14:e00047

    Article  Google Scholar 

  • Sorrell M, Caplan AI (2009) Fibroblasts – a diverse population at the center of it all. Int Rev Cell Molecr Biol 276:161–214

    Article  Google Scholar 

  • Steinberg MS (1970) Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool 173(4):395–433

    Article  CAS  Google Scholar 

  • Steinberg MS (2007) Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev 17(4):281–286

    Article  CAS  Google Scholar 

  • Terekhov SM, Gatsadze KA, Grinberg KN (1984) Clonal heterogeneity of the fibroblasts from various human embryonic tissues in vitro. Biull Eksp Biol Med 97:590–592

    Article  CAS  Google Scholar 

  • Theobald VA, Lauer JD, Kaplan FA, Baker KB, Rosenberg M (1993) "Neutral allografts"--lack of allogeneic stimulation by cultured human cells expressing MHC class I and class II antigens. Transplant 55(1):128–133

  • Vladimirskaia EB, Koshel’ IV, Tsuria VM, Egamberdyev O, Aimanbetova AM (1990) Stromal fibroblasts of normal bone marrow in children. Gematol Transfuziol 35:3–5

    CAS  Google Scholar 

  • Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled. Phase III Clinical Trial Dermatol Surg 33(3):263–268

    CAS  Google Scholar 

  • Woodley DT (2017) Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing. Dermatol Clin 35:95–100

    Article  CAS  Google Scholar 

  • Zorin VL, Kopnin PB, Zorina AI, Eremin II, Lazareva NL, Chauzova TS, Samchuk DP, Petrikina AP, Eremin PS, Korsakov IN, Grinakovskaya OS, Solovieva EV, Kotenko KV, Pulin AA (2014) Optimisation of conditions of skin and gingival mucosa derived human fibroblasts obtainment and cultivation. Genes & Cells 9(2):53–60

    Google Scholar 

  • Zorin V, Zorina A, Cherkasov V, Deev R, Kopnin P, Isaev A (2017a) Clinical-instrumental and morphological evaluation of the effect of autologous dermal fibroblasts administration. J Tissue Eng Regen Med 11(3):778–786

    Article  CAS  Google Scholar 

  • Zorin V, Zorina A, Smetanina N, Kopnin P, Ozerov IV, Leonov S, Isaev A, Klokov D, Osipov AN (2017b) Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation. Aging (albany NY) 9:1404–1413

    Article  CAS  Google Scholar 

  • Zorin V, Grekhova A, Pustovalova M, Zorina A, Smetanina N, Vorobyeva N, Kopnin P, Gilmutdinova I, Moskalev A, Osipov AN, Leonov S (2019) Spontaneous γH2AX foci in human dermal fibroblasts in relation to proliferation activity and aging. Aging (albany NY) 11(13):4536–4546

    Article  CAS  Google Scholar 

  • Zou ML, Teng YY, Wu JJ, Liu SY, Tang XY, Jia Y, Chen ZH, Zhang KW, Sun ZL, Li X, Ye JX, Xu RS, Yuan FL (2021) Fibroblasts: heterogeneous cells with potential in regenerative therapy for scarless wound healing. Front Cell Dev Biol 9:713605

    Article  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program “Priority 2030” and supported by Russian Science Foundation (RSF) (project No. 20–15-00321).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizaveta V. Koudan, Vladimir A. Mironov or Vadim L. Zorin.

Ethics declarations

Ethical approval

The clinical studies were carried out following the medical technology approved by Federal Service on Surveillance in Healthcare and Social Development (FS № 2009/398 from 21.07.2010).

Informed consent

All patients signed the informed consent form.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 282 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koudan, E.V., Zorina, A.I., Levin, A.A. et al. Correlation of the regenerative potential of dermal fibroblasts in 2D culture with the biological properties of fibroblast-derived tissue spheroids. Cell Tissue Res 390, 453–464 (2022). https://doi.org/10.1007/s00441-022-03690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03690-1

Keywords

Navigation