Skip to main content

Advertisement

Log in

SPATA33 affects the formation of cell adhesion complex by interacting with CTNNA3 in TM4 cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Communication between Sertoli cell is essential during spermatogenesis and testicular development in mice, and the dynamic balance of this communication is regulated by some adhesion proteins. In this study, we found that SPATA33 and CTNNA3 were involved in this process. Quantitative real-time PCR and western blotting showed similar trend of expression of two proteins in the testis of mice of different ages. Subsequently, CRISPR-Cas9 technique was used to prepare Spata33 knockout cell lines with TM4 cells, cell wound scratch assay showed that Spata33 gene knockout affected cell migration, and flow cytometry assay showed that Spata33 knockout resulted in a decreased percentage of G1 phase cells in TM4 cell line. In addition, phalloidin staining assay showed that Spata33 gene knockout disrupted the formation of F-actin. Moreover, the protein immunoprecipitation experiment showed the interaction between SPATA33 and CTNNA3, which affected the interaction between CTNNA3 and CTNNB1. SPATA33 inhibits the formation of CDH1-CTNNB1-CTNNA3 complex through its interaction with CTNNA3, thus weakening adhesion between Sertoli cell and promoting cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data and materials are transparent.

References

  • Andrews PW, Banting G, Damjanov I, Arnaud D, Avner P (1984) Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma 3(4):347-361

  • Bacchelli E et al (2014) A CTNNA3 compound heterozygous deletion implicates a role for αT-catenin in susceptibility to autism spectrum disorder. J Neurodev Disord 6:11

    Article  Google Scholar 

  • Barbara, Pascal de Santa et al (1998) Steroidogenic factor-1 regulates transcription of the human anti-mullerian hormone receptor. J Biolog Chem 273

  • Chang YF et al (2011) Role of beta-catenin in post-meiotic male germ cell differentiation. PLoS ONE 6(11):e28039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2013) A novel testis-enriched gene Spata33 is expressed during spermatogenesis. PLoS ONE 8(7):e67882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Mruk DD (2002) Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 82(4):825–874

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K et al (2012) Expression of the androgen receptor in the testis of mice with a Sertoli cell specific knock-out of the connexin 43 gene (SCCx43KO(-/-)). Reprod Biol 12(4):341–346

    Article  PubMed  Google Scholar 

  • Coates JC (2003) Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 13(9):463–471

    Article  CAS  PubMed  Google Scholar 

  • Dijk M et al (2004) Differential downregulation of alphaT-catenin expression in placenta: trophoblast cell type-dependent imprinting of the CTNNA3 gene. Gene Expr Patterns 5(1):61–65

    Article  PubMed  CAS  Google Scholar 

  • Du W et al (2016) Kinesin 1 drives autolysosome tubulation. Dev Cell 37(4):326–336

    Article  CAS  PubMed  Google Scholar 

  • Dufour GK, Jannette M (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Fayomi AP, Orwig KE (2018) Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Research 29:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmsbee SS et al (2016a) The cardiomyocyte protein alphaT-catenin contributes to asthma through regulating pulmonary vein inflammation. J Allergy Clin Immunol 138(1):123–129 e2

  • Folmsbee SS et al (2016b) alphaT-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Goossens S et al (2007) Truncated isoform of mouse alpha T-catenin is testis-restricted in expression and function. FASEB J 21(3):647–655

    Article  CAS  PubMed  Google Scholar 

  • Han SP, Yap AS (2013) An alpha-catenin deja vu. Nat Cell Biol 15(3):238–239

    Article  CAS  PubMed  Google Scholar 

  • Hermo L et al (2010a) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73(4):241–278

  • Hermo L et al (2010b) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 73(4):320–363

  • Janssens B et al (2001a) αT-Catenin: a novel tissue-specific β-catenin-binding protein mediating strong cell-cell adhesion. J Cell Sci 114

  • Janssens B et al (2001b) alpha T-Catenin: a novel tissue-specific beta-catenin-binding protein mediating strong cell-cell adhesion. J Cell Sci 114(17):3177–3188

    Article  CAS  PubMed  Google Scholar 

  • Jiang G et al (2012) P120-catenin isoforms 1 and 3 regulate proliferation and cell cycle of lung cancer cells via beta-catenin and Kaiso respectively. PLoS ONE 7(1):e30303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kast DJ, Dominguez R (2017) The cytoskeleton-autophagy connection. Curr Biol 27(8):R318–R326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH et al (2013) Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation. Cell Cycle 12(15):2443–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn K, Romer W (2015) Considering autophagy, beta-Catenin and E-Cadherin as innovative therapy aspects in AML. Cell Death Dis 6:e1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2015) Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res 116(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2012) Loss of alphaT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. J Cell Sci 125(Pt 4):1058–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Linxi et al (2017) Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons. F1000Res 6:1565

  • Lie PP et al (2010) Cytoskeletal dynamics and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365(1546):1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzon A et al (2015) Homozygous desmocollin-2 mutations and arrhythmogenic cardiomyopathy. Am J Cardiol 116(8):1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Maiden SL, Hardin J (2011) The secret life of alpha-catenin: moonlighting in morphogenesis. J Cell Biol 195(4):543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe MJ et al (2012) Androgen initiates Sertoli cell tight junction formation in the hypogonadal (hpg) mouse. Biol Reprod 87(2):38

    Article  PubMed  CAS  Google Scholar 

  • Mi N et al (2015) CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 17(9):1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Miyata H et al (2021) SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice. Proc Natl Acad Sci U S A 118(35):e2106673118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsef L et al (2018) Gene alterations and expression spectrum of SPATA33 in nonobstructive azoospermic Iranian men. Mol Reprod Dev 85(10):760–767

    Article  CAS  PubMed  Google Scholar 

  • Moreau K et al (2015) Transcriptional regulation of annexin A2 promotes starvation-induced autophagy. Nat Commun 6:8045

    Article  CAS  PubMed  Google Scholar 

  • Nong CZ et al (2006) P120ctn overexpression enhances beta-catenin-E-cadherin binding and down regulates expression of survivin and cyclin D1 in BEL-7404 hepatoma cells. World J Gastroenterol 12(8):1187–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Robaire B (2013) Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases. PLoS ONE 8(12)

  • Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbazi MN, Perez-Moreno M (2015) Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 3(3):e1045684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shalem O et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  PubMed  Google Scholar 

  • Shenying Fang et al (2020) Functional annotation of melanoma risk loci identifies novel susceptibility genes. Carcinogenesis 41(4)

  • Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15(6):397–410

    Article  CAS  PubMed  Google Scholar 

  • Tramoni M et al (2009) Contraceptive steroids from pharmaceutical waste perturbate junctional communication in Sertoli cells. Biochimie 91(11–12):1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Tyberghein K et al (2012) Tissue-wide overexpression of alpha-T-catenin results in aberrant trophoblast invasion but does not cause embryonic mortality in mice. Placenta 33(7):554–560

    Article  CAS  PubMed  Google Scholar 

  • Vanpoucke G et al (2004) GATA-4 and MEF2C transcription factors control the tissue-specific expression of the alphaT-catenin gene CTNNA3. Nucleic Acids Res 32(14):4155–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vite A, Li J, Radice GL (2015) New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res 360(3):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickline ED et al (2016) alphaT-Catenin is a constitutive actin-binding alpha-catenin that directly couples the cadherin.catenin complex to actin filaments. J Biol Chem 291(30):15687–15699

  • Wu X et al (2012) Transgene-mediated rescue of spermatogenesis in Cldn11-null mice. Biol Reprod 86(5):139, 1–11

  • Xu Xu et al (2021) SPATA33 functions as a mitophagy receptor in mammalian germline. Autophagy 17(5):1284–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JS et al (2009) Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80(1):162–174

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lui WY (2014) Dysregulation of nectin-2 in the testicular cells: an explanation of cadmium-induced male infertility. Biochim Biophys Acta 1839(9):873–884

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2021) SPATA33 is an autophagy mediator for cargo selectivity in germline mitophagy. Cell Death Differ 28:1076–1090

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2019YFA0802500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Ethics declarations

Ethics approval

All animal experiments and methods were performed in accordance with the relevant approved guidelines and regulations, as well as under the approval of the Ethics Committee of Wuhan University. This article does not contain any studies with human participants performed by any of the authors.

Consent for publication

All data are permitted for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. SPATA33 affects the formation of cell adhesion complex by interacting with CTNNA3 in TM4 cells. Cell Tissue Res 389, 145–157 (2022). https://doi.org/10.1007/s00441-022-03631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03631-y

Keywords

Navigation