Skip to main content

Advertisement

Log in

Distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Lamellar corpuscles function as mechanoreceptors in the skin, composed of axon terminals and lamellae constructed by terminal Schwann cells. They are classified into Pacinian, Meissner, and simple corpuscles based on histological criteria. Lamellar corpuscles in rat dermal papilla cells have been reported; however, the morphological aspects have yet to be thoroughly investigated. In the present study, we analyzed the enzyme activity, distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin. The lamellar corpuscles exhibiting non-specific cholinesterase were densely distributed in rat footpads, evident as notable skin elevations, especially at the apex, the highest portion of the ridges in each footpad. In contrast, only a few lamellar corpuscles were found in other plantar skin areas. Lamellar corpuscle was considered composed of a flat axon terminal Schwann cell lamellae, which were roughly concentrically arranged in the dermal papilla. These histological characteristics correspond to those of the simple corpuscle. Moreover, the axon tracing method revealed that one trunk axon innervated several simple corpuscles. The territory of the trunk axons overlapped with each other. Finally, the animals’ footprints were analyzed. During the pausing and walking phases, footpads are often in contact with the floor. These results demonstrate that the type of lamellar corpuscles in the dermal papillae of rat plantar skin is a simple corpuscle and implies that their distribution pattern in the plantar skin is convenient for efficient sensing and transmission of mechanical stimuli from the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bolton CF, Winkelmann RK, Dyck PJ (1966) A quantitative study of Meissner’s corpuscles in man. Neurology 16(1):1–9

    CAS  PubMed  Google Scholar 

  • Castano P, Rumio C, Morini M, Miani A Jr, Castano SM (1995) Three-dimensional reconstruction of the Meissner corpuscle of man, after silver impregnation and immunofluorescence with PGP 9.5 antibodies using confocal scanning laser microscopy. J Anat 186:261–270

    PubMed  PubMed Central  Google Scholar 

  • Cauna N, Mannan G (1959) Development and postnatal changes of digital Pacinian corpuscles (corpuscula lamellosa) in the human hand. J Anat 93:271–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cauna N, Ross LL (1960) the fine structure of Meissner’s touch corpuscles of human finger. J Biophys Biochem Cytol 8:467–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Valle ME, Cabal A, Alvarez-Mendez JC, Calzada B, Haro JJ, Collier W, Vega JA (1993) Effect of denervation on lamellar cells of Meissner-like sensory corpuscles of the rat. An immunohistochemical study. Cell Mol Biol (Noisy-le-grand) 39:801-807

  • Drummond HA, Abboud FM, Welsh MJ (2000) Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884:1-12

  • Dubový P (1989) Electron microscopical study of non-specific cholinesterase activity in simple lamellar corpuscles of glabrous skin from cat rhinarium: a histochemical evidence for the presence of collagenase-sensitive molecular forms and their secretion. Acta Histochem 86:63–77

    PubMed  Google Scholar 

  • Dubový P (1996) Enzyme histochemistry of cutaneous sensory nerve formations. Microsc Res Tech 34:334–350

    PubMed  Google Scholar 

  • Dubový P (2000) Restoration of lamellar structures in adult rat Pacinian corpuscles following their simultaneous freezing injury and denervation. Anat Embryol (berl) 202:235–245

    Google Scholar 

  • Ebara S, Kumamoto K, Baumann BI, Halata Z (2008) Three-dimensional analyses of touch domes in the hairy skin of the cat paw reveal morphological substrates for complex sensory processing. Neurosci Res 61:159–171

    PubMed  Google Scholar 

  • Feito J, Garcia-Suarez O, Garcia-Piqueras J, Garcia-Mesa Y, Perez-Sanchez A, Suazo I, Cabo R, Suarez- Quintanilla J, Cobo J, Vega JA (2018) The development of human digital Meissner's and Pacinian corpuscles. Ann Anat 219:8-24

  • Furuta T, Bush NE, Yang AE, Ebara S, Miyazaki N, Murata K, Hirai D, Shibata KI, Hartmann MJZ (2020) The cellular and mechanical basis for response characteristics of identified primary afferents in the rat vibrissal system. Curr Biol 30:815-826.e5

    CAS  PubMed  Google Scholar 

  • Garcia-Piqueras J, Garcia-Suarez O, Rodriguez-Gonzalez MC, Cobo JL, Cabo R, Vega JA, Feito J (2017) Endoneurial-CD34 positive cells define an intermediate layer in human digital Pacinian corpuscles. Ann Anat 211:55-60

  • Germann C, Sutter R, Nanz D (2021) Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers. Skeletal Radiol 50:1249–1255

    PubMed  Google Scholar 

  • Halata Z, Munger BL (1983) The sensory innervation of primate facial skin. II. Vermilion border and mucosa of lip. Brain Res 286:81–107

    CAS  PubMed  Google Scholar 

  • Ide C (1976) The fine structure of the digital corpuscle of the mouse toe pad, with special reference to nerve fiber. Am J Anat 147:329–355

    CAS  PubMed  Google Scholar 

  • Ide C (1982) Histochemical study of lamellar cell development of Meissner corpuscles. Arch Histol Jpn 45:83–97

    CAS  PubMed  Google Scholar 

  • Ide C, Saito T (1980) Electron microscopic histochemistry of cholinesterase activity of Vater-Pacini corpuscle. Acta Histochem Cytochem 13:298–305

    CAS  Google Scholar 

  • Iwanaga T, Fujita T, Takahashi Y, Nakajima T (1982) Meissner’s and Pacinian corpuscles as studied by immunohistochemistry for S-100 protein, neuron-spacific enolase and neurofilament protein. Neurosci Lett 31:117–121

    CAS  PubMed  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    CAS  PubMed  Google Scholar 

  • Kappos EA, Sieber PK, Engels PE, Mariolo AV, D’Arpa S, Schaefer DJ, Kalbermatten DF (2017) Validity and reliability of the CatWalk system as a static and dynamic gait analysis tool for the assessment of functional nerve recovery in small animal models. Brain Behav 7:e00723

    PubMed  PubMed Central  Google Scholar 

  • Karnovsky MJ, Root L (1964) A “direct-coloring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221

    CAS  PubMed  Google Scholar 

  • Kimura S, Schaumann BA, Shiota K (1996) Fetal and postnatal development of palmar, plantar, and digital pads, and flexion creases of the rat (Rattus norvegicus). J Morphol 228:179–187

    CAS  PubMed  Google Scholar 

  • Koike T, Wakabayashi T, Mori T, Takamori Y, Hirahara Y, Yamada H (2014) Sox2 in the adult rat sensory nervous system. Histochem Cell Biol 141:301–309

    CAS  PubMed  Google Scholar 

  • Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, Suga M, Kataoka Y, Yamada H (2019) Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol 527:2047–2060

    CAS  PubMed  Google Scholar 

  • Kumamoto K, Senuma H, Ebara S, Matuura T (1993a) Distribution of pacinian corpuscle in the hand of the monkey. Macaca Fuscata J Anat 183:149–159

    PubMed  Google Scholar 

  • Kumamoto K, Takei M, Kinoshita M, Ebara S, Matuura T (1993b) Distribution of pacinian corpuscle in the cat forefoot. J Anat 182:23–28

    PubMed  PubMed Central  Google Scholar 

  • Leem W, Willis WD, Chung JM (1993) Cutaneous sensory receptors in the rat foot. J Neurophysiol 69(5):1684–1699

    CAS  PubMed  Google Scholar 

  • Loo SK, Halata Z (1985) the sensory innervation of nosal glabrous skin in the short-nosed bandicoot (Isoodon macrourus) and the opossum (Didelphis virginiana). J Anat 143:167–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Ochi K, Nakakura-Ohshima K, Youn SH, Wakisaka S (1999) The Ruffini ending as the primary mechanoreceptor in the periodontal ligament: its morphology, cytochemical features, regeneration, and development. Crit Rev Oral Biol Med 10:307–327

    CAS  PubMed  Google Scholar 

  • Malinovsky L (1989) Classification of the skin mechanoreceptor. Verh Anat Ges 82:141-149

  • McLoughlin H, Fitzgerald MJ (1989) Encapsulated nerve endings in murine dorsal ear skin. J Anat 167:215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munger L, Ide C (1988) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1–34

    CAS  PubMed  Google Scholar 

  • Neubarth NL, Emanuel AJ, Liu Y, Springel MW, Handler A, Zhang Q, Lehnert BP, Guo C, Orefice LL, Abdelaziz A, DeLisle MM, Iskols M, Rhyins J, Kim SJ, Cattel SJ, Regehr W, Harvey CD, Drugowitsch J, Ginty DD (2020) Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368:eabb2751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawson L, Slepecky NB, Bolanowski SJ (2000) Immunocytochemical identification of proteins within the Pacinian corpuscle. Somatosens Mot Res 17:159–170

    CAS  PubMed  Google Scholar 

  • Pawson L, Prestia LT, Mahoney GK, Guclu B, Cox PJ, Pack AK (2009) GABAergic/glutamatergic-glial/neuronal interaction contributes to rapid adaptation in Pacinian corpuscles. J Neurosci 29:2695–2705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes NG, Murthy NS, Lehman JS, Rubin DA (2018) Pacinian corpuscles: an explanation for subcutaneous palmar nodules routinely encountered on MR examinations. Skeletal Radiol 47:1553–1558

    PubMed  Google Scholar 

  • Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutlin M, Ho CY, Abraira VE, Cassidy C, Bai L, Woodbury CJ, Ginty DD (2014) The cellular and molecular basis of direction selectivity of Adelta-LTMRs. Cell 159:1640–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders KH, Zimmermann M (1986) Mechanoreceptors in rat glabrous skin: redevelopment of function after nerve crush. J Neurophysiol 55:644–659

    CAS  PubMed  Google Scholar 

  • Sugai N, Cho KH, Murakami G, Abe H, Uchiyama E, Kura H (2021) Distribution of sole Pacinian corpuscles: a histological study using near-term human feet. Surg Radiol Anat. https://doi.org/10.1007/s00276-021-02685-x

    Article  PubMed  Google Scholar 

  • Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H, Eguchi M, Yamaguchi S, Abe T, Kiyonari H, Shimizu Y, Miyawaki A, Yokota H, Ueda HR (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739

    CAS  PubMed  Google Scholar 

  • Suzuki M, Ebara S, Koike T, Tonomura S, Kumamoto K (2012) How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse. Proc Jpn Acad Ser B Phys Biol Sci 88:583–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana T, Ishizeki K, Sakakura Y (1987a) Distinct Types of encapsulated sensory corpuscles in the oral mucosa of the dog: immunohistochemical and electoron microscopic studies. Anat Rec 217:90–98

    CAS  PubMed  Google Scholar 

  • Tachibana T, Sakakura Y, Ishizeki K, Nawa T (1987b) Nerve ending in the vermilion border and mucosal areas of the rat lip. Arch Histol Jpn 50:73–85

    CAS  PubMed  Google Scholar 

  • Takahashi-Iwanaga H (2000) Three-dimensional microanatomy of longitudinal lanceolate endings in rat vibrissae. J Comp Neurol 426:259–269

    CAS  PubMed  Google Scholar 

  • Takahashi-Iwanaga H, Shimoda H (2003) The three-dimensional microanatomy of Meissner corpuscles in monkey palmar skin. J Neurocytol 32:363–371

    PubMed  Google Scholar 

  • Tonomura S, Ebara S, Bagdasarian K, Uta D, Ahissar E, Meir I, Lampl I, Kuroda D, Furuta T, Furue H, Kumamoto K (2015) Structure-function correlations of rat trigeminal primary neurons: Emphasis on club-like endings, a vibrissal mechanoreceptor. Proc Jpn Acad Ser B Phys Biol Sci 91:560–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega JA, Haro JJ, Del Valle ME (1996) Immunohistochemistry of human cutaneous Meissner and pacinian corpuscles. Microsc Res Tech 34:351–361

    CAS  PubMed  Google Scholar 

  • Wakisaka S, Atsumi Y, Youn SH, Maeda T (2000) Morphological and cytochemical characteristics of periodontal Ruffini ending under normal and regeneration processes. Arch Histol Cytol 63:91–113

    CAS  PubMed  Google Scholar 

  • Walcher J, Ojeda-Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR (2018) Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 596:4995-5016

  • Watanabe IS, Yamada E (1985) A light and electron microscopic study of lamellated nerve endings found in the rat cheek mucosa. Arch Histol Jpn 48:497–504

    CAS  PubMed  Google Scholar 

  • Yokota R, Ide C, Nitatori T, Onodera S (1982) Cholinesterase activity in the carotid sinus baroreceptor. Acta Histochemica et Cytochemica 15:537-542

Download references

Acknowledgements

The authors are grateful to Ms. Hitomi Komatsu for her technical assistance with histology and electron microscopy. We appreciate the efforts of Dr. Edward L. White (Ben Gurion University, Israel) and Editage English editing company (https://www.editage.jp/) for editing the manuscript.

Funding

This research was supported by a Grant-in-Aid for Early-Career Scientists 20K16114.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Taro Koike.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experiments were approved by the Animal Committee of the Meiji University of Integrative Medicine and the Animal Committee of Kansai Medical University. All studies were performed in accordance with the principles of laboratory animal care provided by the National Institute of Health.

Competing interests

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, T., Ebara, S., Tanaka, S. et al. Distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin. Cell Tissue Res 386, 477–490 (2021). https://doi.org/10.1007/s00441-021-03525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03525-5

Keywords

Navigation