Skip to main content

Advertisement

Log in

The mRNA decapping protein 2 (DCP2) is a major regulator of developmental events in Drosophila—insights from expression paradigms

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The Drosophila genome codes for two decapping proteins, DCP1 and DCP2, out of which DCP2 is the active decapping enzyme. The present endeavour explores the endogenous promoter firing, transcript and protein expression of DCP2 in Drosophila wherein, besides a ubiquitous expression across development, we identify an active expression paradigm during dorsal closure and a plausible moonlighting expression in the Corazonin neurons of the larval brain. We also demonstrate that the ablation of DCP2 leads to embryonic lethality and defects in vital morphogenetic processes whereas a knockdown of DCP2 in the Corazonin neurons reduces the sensitivity to ethanol in adults, thereby ascribing novel regulatory roles to DCP2. Our findings unravel novel putative roles for DCP2 and identify it as a candidate for studies on the regulated interplay of essential molecules during early development in Drosophila, nay the living world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References 

  • Bahri S, Wang S, Conder R, Choy J, Vlachos S, Dong K, Merino C, Sigrist S, Molnar C, Yang X, Manser E (2010) The leading edge during dorsal closure as a model for epithelial plasticity: Pak is required for recruitment of the Scribble complex and septate junction formation. Development 137:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roy JK (2017) Dicer-1 regulates proliferative potential of Drosophila larval neural stem cells through bantam miRNA based down-regulation of the G1/S inhibitor Dacapo. Dev Bio 423:57–65

    Article  CAS  Google Scholar 

  • Ding B (2015) Gene expression in maturing neurons: regulatory mechanisms and related neurodevelopmental disorders. Acta Physiol Sinica 67:113–133

    Article  CAS  PubMed  Google Scholar 

  • Bhuin T, Roy JK (2009) Rab11 is required for embryonic nervous system development in Drosophila. Cell Tissue Res 335:349–356

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee N, Bohmann D (2012) A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PloS One 7: e34063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller J, Parker R (2004) Eukaryotic mRNA decapping. Ann Rev. Biochem 73:861–890

    CAS  Google Scholar 

  • Dreos R, Ambrosini G, Groux R, Cavin Périer R, Bucher P (2017) The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucl Acid Res 45:D51–D55

    Article  CAS  Google Scholar 

  • Dreos R, Ambrosini G, Périer RC, Bucher P (2014) The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucl Acids Res 43:D92–D96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drysdale R, FlyBase Consortium (2008) FlyBase. In: Drosophila pp. 45-59. Humana Press

    Google Scholar 

  • Evans CJ, Olson JM, Ngo KT, Kim E, Lee NE, Kuoy E, Patananan AN, Sitz D, Tran P, Do MT, Yackle K (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54:618–627

    Article  CAS  PubMed  Google Scholar 

  • Fujita SC, Zipursky SL, Benzer S, Ferrus A, Shotwell SL (1982) Monoclonal antibodies against the Drosophila nervous system. Proc Natl Acad Sci 79:7929–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Jacobson A (2010) RNA decay modulates gene expression and controls its fidelity. Wiley Interdisciplinary Reviews: RNA 1:351–361

    Article  CAS  PubMed  Google Scholar 

  • Goeres DC, Van Norman JM, Zhang W, Fauver NA, Spencer ML, Sieburth LE (2007) Components of the Arabidopsis mRNA decapping complex are required for early seedling development. Plant Cell 19:1549–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartenstein V (1993) Atlas of Drosophila development 328. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Hummel T, Krukkert K, Roos J, Davis G, Klämbt C (2000) Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26:357–370

    Article  CAS  PubMed  Google Scholar 

  • Hummel T, Schimmelpfeng K, Klämbt, C (1999) Commissure Formation in the Embryonic CNS of Drosophila: I. Identification of the Required Gene Functions. Developmental biology 209: 381-398.

    Article  CAS  PubMed  Google Scholar 

  • Jacinto A, Woolner S, Martin P (2002) Dynamic analysis of dorsal closure in Drosophila: from Genetics to Cell Biology. Dev Cell 3:9–19

    Article  CAS  PubMed  Google Scholar 

  • Karkali K, Saunders TE, Vernon SW, Baines RA, Panayotou G, Martin-Blanco E (2020) JNK signaling in pioneer neurons directs the architectural organization of the CNS and coordinates the motor activity of the Drosophila embryo. BioRxiv: 092486

    Article  Google Scholar 

  • Kushnir T, Mezuman S, Bar-Cohen S, Lange R, Paroush ZE, Helman A (2017) Novel interplay between JNK and Egfr signaling in Drosophila dorsal closure. PLoS Genet 13: e1006860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lada K, Gorfinkiel N, Arias AM (2012) Interactions between the amnioserosa and the epidermis revealed by the function of the u-shaped gene. Biology Open 1:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 12:49–70

    Article  CAS  Google Scholar 

  • Lall S, Piano F, Davis RE (2005) Caenorhabditis elegans decapping proteins: localization and functional analysis of Dcp1, Dcp2, and DcpS during embryogenesis. Mol Biol Cell 16:5880–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH (2008) Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res 331:659–673

    Article  CAS  PubMed  Google Scholar 

  • Lin MD, Fan SJ, Hsu WS, Chou TB (2006) Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell 10:601–613

    Article  CAS  PubMed  Google Scholar 

  • Lin MD, Jiao X, Grima D, Newbury SF, Kiledjian M, Chou TB (2008) Drosophila processing bodies in oogenesis. Dev Bio 322:276–288

    Article  CAS  Google Scholar 

  • Liu Y, Liao S, Veenstra JA, Nässel DR (2016) Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci Rep 6:26620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacsovich T, Asztalos Z, Awano W, Baba K, Kondo S, Niwa S, Yamamoto D (2001) Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157:727–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani M, Chen C, Amblee V, Liu H, Mathur T, Zwicke G, Zabad S, Patel B, Thakkar J, Jeffery CJ (2014) MoonProt: a database for proteins that are known to moonlight. Nucl Acid Res 43:D277–D282

    Article  CAS  Google Scholar 

  • Martinez Arias A (1993) Development and patterning of the larval epidermis of Drosophila. In: The Development of Drosophila melanogaster I, pp. 517–608, CSHL Press

    Google Scholar 

  • McClure KD, Heberlein U (2013) A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila. J Neurosci 33:4044–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandy N, Roy JK (2020) Rab11 is essential for lgl mediated JNK–Dpp signaling in dorsal closure and epithelial morphogenesis in Drosophila. Dev Bio 464:188–201

    Article  CAS  Google Scholar 

  • Narasimha M, Brown NH (2006) Confocal microscopy of Drosophila embryos. In: Cell Biology-A Laboratory Handbook (ed.) JE Celis, pp77–86. Academic Press

    Google Scholar 

  • Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA (2008) A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 9:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann CJ, Cohen SM (1997) Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124:871–880

    Article  CAS  PubMed  Google Scholar 

  • Noselli S, Agnès F (1999) Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev 9:466–472

    Article  CAS  PubMed  Google Scholar 

  • Noselli S (1998) JNK signaling and morphogenesis in Drosophila. Trends Genet 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Park D, Veenstra JA, Park JH, Taghert PH (2008) Mapping peptidergic cells in Drosophila: where DIMM fits in. PloS One 3:e1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rämet M, Lanot R, Zachary D, Manfruelli P (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Bio 241:145–156

    Article  CAS  Google Scholar 

  • Rehwinkel JAN, Behm-Ansmant I, Gatfield D, Izaurralde E (2005) A crucial role for GW182 and the DCP1: DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Sun J, Zhang Y, Liu T, Ren Q, Li Y, Guo A (2012) Down-regulation of decapping protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila. PloS One 7:e52521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincón-Limas DE, Lu CH, Canal I, Calleja M, Rodríguez-Esteban C, Izpisúa-Belmonte JC, Botas J (1999) Conservation of the expression and function of apterous orthologs in Drosophila and mammals. Proc Natl Acad Sci 96:2165–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos JG, Vömel M, Struck R, Homberg U, Nässel DR, Wegener C (2007) Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2:e695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasikumar S, Roy JK (2009) Developmental expression of Rab11, a small GTP-binding protein in Drosophila epithelia. Genesis 47:32–39

    Article  CAS  PubMed  Google Scholar 

  • Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:409–426

    Article  CAS  PubMed  Google Scholar 

  • Sha K, Choi SH, Im J, Lee GG, Loeffler F, Park JH (2014) Regulation of ethanol-related behavior and ethanol metabolism by the Corazonin neurons and Corazonin receptor in Drosophila melanogaster. PLoS One 9:e87062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shklover J, Mishnaevski K, Levy-Adam F, Kurant E (2015) JNK pathway activation is able to synchronize neuronal death and glial phagocytosis in Drosophila. Cell Death Dis 6:e1649

    Article  CAS  Google Scholar 

  • Stronach B, Perrimon N (2002) Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper. Genes Dev 16:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veverytsa L, Allan DW (2012) Temporally tuned neuronal differentiation supports the functional remodeling of a neuronal network in Drosophila. Proc Natl Acad of Sci 109:E748–E756

    Article  CAS  Google Scholar 

  • Vömel M, Wegener C (2008) Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 3:e1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C (1986) Drosophila: a practical approach. IRL Press, Oxford, England, p 200

    Google Scholar 

  • Xu J, Yang JY, Niu QW, Chua NH (2006) Arabidopsis DCP2, DCP1 and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Seminars in Cell Dev Bio 23:523–529

    Article  CAS  Google Scholar 

  • Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121:2265–2278

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Bretz CA, Hawksworth SA, Hirsh J, Johnson EC (2010) Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One 5:e9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the fly community for generously providing the fly stocks. We thank Prof. B. J. Rao, TIFR, Mumbai for providing the TRE-JNK/CyO stock; Prof. Gaiti Hasan, NCBS, Bangalore, for providing the sNPF-GAL4, Dilp2-GAL4 and Crz-GAL4/CyO stocks and Prof. Utpal Banerjee, UCLA, for providing the G-TRACE/CyO flies. We duly acknowledge the National Facility for Laser Scanning Confocal Microscopy, Department of Zoology, Banaras Hindu University. The equipment facility supported by UGC-CAS, DST-FIST, and IoE to Department of Zoology are duly acknowledged. We sincerely acknowledgeNabarun Nandy for the assistance and valuable discussions. We sincerely thank Department of Science and Technology (DST) for providing fellowship to RK and support to JKR.

Funding

 Financial support received from Department of Science and Technology, New Delhi in the form of fellowship to RK is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

RK: conceptualization, resources, methodology, investigation, data curation, formal analysis and interpretation, writing the manuscript. JKR: supervision, resources, writing the manuscript.

Corresponding author

Correspondence to Jagat Kumar Roy.

Ethics declarations

Ethics approval

All studies were performed as per ethical guidelines. All applicable international, national, and/or institutional guidelines for the care and use of flies were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17240 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunar, R., Roy, J.K. The mRNA decapping protein 2 (DCP2) is a major regulator of developmental events in Drosophila—insights from expression paradigms. Cell Tissue Res 386, 261–280 (2021). https://doi.org/10.1007/s00441-021-03503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03503-x

Keywords

Navigation