Skip to main content
Log in

Olfactory subsystems associated with the necklace glomeruli in rodents

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arakawa H, Kelliher KR, Zufall F, Munger SD (2013) The receptor guanylyl cyclase type D (GC-D) ligand uroguanylin promotes the acquisition of food preferences in mice. Chem Senses 38:391–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker H, Cummings DM, Munger SD, Margolis JW, Franzen L, Reed RR, Margolis FL (1999) Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): Biochemical and morphological consequences in adult mice. J Neurosci 19:9313–9321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghard A, Buck LB (1996) Sensory transduction in vomeronasal neurons: Evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J Neurosci 16:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleymehl K, Perez-Gomez A, Omura M, Moreno-Perez A, Macias D, Bai Z, Johnson RS, Leinders-Zufall T, Zufall F, Mombaerts P (2016) A sensor for low environmental oxygen in the mouse main olfactory epithelium. Neuron 92:1196–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom ML, Johnston LB, Datta SR (2020) Renewal and differentiation of GCD necklace olfactory sensory neurons. Chem Senses 45:333–346

    Article  CAS  PubMed  Google Scholar 

  • Bozza T, Vassalli A, Fuss S, Zhang JJ, Weiland B, Pacifico R, Feinstein P, Mombaerts P (2009) Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61:220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechbuhl J, de Valliere A, Wood D, Nenniger Tosato M, Broillet MC (2020) The Grueneberg ganglion controls odor-driven food choices in mice under threat. Commun Biol 3:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Brechbühl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  • Brechbuhl J, Klaey M, Moine F, Bovay E, Hurni N, Nenniger-Tosato M, Broillet MC (2014) Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion. Front Neuroanat 8:87

    PubMed  PubMed Central  Google Scholar 

  • Brechbuhl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F, Giroud C, Broillet MC (2013) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci U S A 110:4762–4767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechbuhl J, Moine F, Tosato MN, Sporkert F, Broillet MC (2015) Identification of pyridine analogs as new predator-derived kairomones. Front Neurosci 9:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Breer H, Fleischer J, Strotmann J (2006) The sense of smell: Multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  CAS  PubMed  Google Scholar 

  • Bumbalo R, Lieber M, Schroeder L, Polat Y, Breer H, Fleischer J (2017) Grueneberg glomeruli in the olfactory bulb are activated by odorants and cool temperature. Cell Mol Neurobiol 37:729–742

    Article  PubMed  Google Scholar 

  • Burne TH, Johnston AN, Wilkinson LS, Kendrick KM (2010) Effects of anesthetic agents on socially transmitted olfactory memories in mice. Neurobiol Learn Mem 93:268–274

    Article  CAS  PubMed  Google Scholar 

  • Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chao YC, Cheng CJ, Hsieh HT, Lin CC, Chen CC, Yang RB (2010) Guanylate cyclase-G, expressed in the Grueneberg ganglion olfactory subsystem, is activated by bicarbonate. Biochem J 432:267–273

    Article  CAS  PubMed  Google Scholar 

  • Cockerham RE, Puche AC, Munger SD (2009) Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli. PLoS ONE 4:e4657

    Article  PubMed  PubMed Central  Google Scholar 

  • Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    Article  CAS  PubMed  Google Scholar 

  • Eon Kuek L, Leffler M, Mackay GA, Hulett MD (2016) The MS4A family: Counting past 1, 2 and 3. Immunol Cell Biol 94:11–23

    Article  PubMed  Google Scholar 

  • Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H (2006) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125:337–349

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Mamasuew K, Breer H (2009) Expression of cGMP signaling elements in the Grueneberg ganglion. Histochem Cell Biol 131:75–88

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H (2006) Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98:543–554

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32:623–631

    Article  CAS  PubMed  Google Scholar 

  • Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci U S A 92:3571–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 22:2649–2654

    Article  PubMed  Google Scholar 

  • Galef B (1985) Social learning in wild Norway rats. In: Johnston T, Pietrewicz A (eds) Issues in the Ecological Study of Learning. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 143–166

    Google Scholar 

  • Galef B, Wigmore S (1983) Transfer of information concerning distant foods: A laboratory investigation of the ‘information-centre’ hypothesis. Anim Behav 31:748–758

    Article  Google Scholar 

  • Galef BG Jr, Mason JR, Preti G, Bean NJ (1988) Carbon disulfide: A semiochemical mediating socially-induced diet choice in rats. Physiol Behav 42:119–124

    Article  CAS  PubMed  Google Scholar 

  • Galef BG, Stein M (1985) Demonstrator influence on observer diet preference: Analyses of critical social interactions and olfactory signals. Animal Learning & Behavior 13:31–38

    Article  Google Scholar 

  • Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR (2016) A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell 165:1734–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruneberg H (1973) A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 140:39–52

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke W, Mamasuew K, Biel M, Yang RB, Fleischer J (2013) Odorant-evoked electrical responses in Grueneberg ganglion neurons rely on cGMP-associated signaling proteins. Neurosci Lett 539:38–42

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zimmerman AD, Munger SD (2018) Unique molecular markers for GC-D-expressing olfactory sensory neurons and chemosensory neurons of the Grueneberg ganglion. bioRxiv, https://doi.org/10.1101/346502. Cold Spring Harbor Laboratory.

  • Jia C, Goldman G, Halpern M (1997) Development of vomeronasal receptor neuron subclasses and establishment of topographic projections to the accessory olfactory bulb. Brain Res Dev Brain Res 102:209–216

    Article  CAS  PubMed  Google Scholar 

  • Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci U S A 94:3388–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher KR, Munger SD (2015) Chemostimuli for guanylyl cyclase-D-expressing olfactory sensory neurons promote the acquisition of preferences for foods adulterated with the rodenticide warfarin. Front Neurosci 9:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikusui T, Takigami S, Takeuchi Y, Mori Y (2001) Alarm pheromone enhances stress-induced hyperthermia in rats. Physiol Behav 72:45–50

    Article  CAS  PubMed  Google Scholar 

  • Koos DS, Fraser SE (2005) The Grueneberg ganglion projects to the olfactory bulb. NeuroReport 16:1929–1932

    Article  PubMed  Google Scholar 

  • Kuhn M (2009) Function and dysfunction of Mammalian membrane guanylyl cyclase receptors: Lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 47–69.

  • Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104:14507–14512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liman ER, Corey DP, Dulac C (1999) TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96:5791–5796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Fraser SE, Koos DS (2009) Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 516:36–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Chen Z, Shang C, Yan F, Shi Y, Zhang J, Qu B, Han H, Wang Y, Li D, Südhof TC, Cao P (2017) IGF1-Dependent synaptic plasticity of mitral cells in olfactory memory during social learning. Neuron 95:106-122.e105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma M, Grosmaitre X, Iwema CL, Baker H, Greer CA, Shepherd GM (2003) Olfactory signal transduction in the mouse septal organ. J Neurosci 23:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamasuew K, Breer H, Fleischer J (2008) Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci 28:1775–1785

    Article  PubMed  Google Scholar 

  • Mamasuew K, Hofmann N, Kretzschmann V, Biel M, Yang RB, Breer H, Fleischer J (2011) Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on cyclic guanosine monophosphate signaling elements. Neurosignals 19:198–209

    Article  CAS  PubMed  Google Scholar 

  • Mamasuew K, Michalakis S, Breer H, Biel M, Fleischer J (2010) The cyclic nucleotide-gated ion channel CNGA3 contributes to coolness-induced responses of Grueneberg ganglion neurons. Cell Mol Life Sci 67:1859–1869

    Article  CAS  PubMed  Google Scholar 

  • Matsuo T, Rossier DA, Kan C, Rodriguez I (2012) The wiring of Grueneberg ganglion axons is dependent on neuropilin 1. Development 139:2783–2791

    Article  CAS  PubMed  Google Scholar 

  • Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci U S A 97:10595–10600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger SD, Leinders-Zufall T, McDougall LM, Cockerham RE, Schmid A, Wandernoth P, Wennemuth G, Biel M, Zufall F, Kelliher KR (2010) An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol 20:1438–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  CAS  PubMed  Google Scholar 

  • Omura M, Mombaerts P (2014) Trpc2-expressing sensory neurons in the main olfactory epithelium of the mouse. Cell Rep 8:583–595

    Article  CAS  PubMed  Google Scholar 

  • Omura M, Mombaerts P (2015) Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2. Mol Cell Neurosci 65:114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacifico R, Dewan A, Cawley D, Guo C, Bozza T (2012) An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep 2:76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gomez A, Bleymehl K, Stein B, Pyrski M, Birnbaumer L, Munger SD, Leinders-Zufall T, Zufall F, Chamero P (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1340–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posadas-Andrews A, Roper TJ (1983) Social transmission of food-preferences in adult rats. Anim Behav 31:265–271

    Article  Google Scholar 

  • Ring G, Mezza RC, Schwob JE (1997) Immunohistochemical identification of discrete subsets of rat olfactory neurons and the glomeruli that they innervate. J Comp Neurol 388:415–434

    Article  CAS  PubMed  Google Scholar 

  • Roppolo D, Ribaud V, Jungo VP, Luscher C, Rodriguez I (2006) Projection of the Gruneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 23:2887–2894

    Article  PubMed  Google Scholar 

  • Ross RS, Eichenbaum H (2006) Dynamics of hippocampal and cortical activation during consolidation of a nonspatial memory. J Neurosci 26:4852–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, Marioni JC, Logan DW (2015) Hierarchical deconstruction of mouse olfactory sensory neurons: From whole mucosa to single-cell RNA-seq. Sci Rep 5:18178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F (2010) Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci 30:7563–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinoda K, Ohtsuki T, Nagano M, Okumura T (1993) A possible functional necklace formed by placental antigen X-P2-immunoreactive and intensely acetylcholinesterase-reactive (PAX/IAE) glomerular complexes in the rat olfactory bulb. Brain Res 618:160–166

    Article  CAS  PubMed  Google Scholar 

  • Shinoda K, Shiotani Y, Osawa Y (1989) “Necklace olfactory glomeruli” form unique components of the rat primary olfactory system. J Comp Neurol 284:362–373

    Article  CAS  PubMed  Google Scholar 

  • Stebe S, Schellig K, Lesage F, Breer H, Fleischer J (2014) The thermosensitive potassium channel TREK-1 contributes to coolness-evoked responses of Grueneberg ganglion neurons. Cell Mol Neurobiol 34:113–122

    Article  CAS  PubMed  Google Scholar 

  • Storan MJ, Key B (2006) Septal organ of Gruneberg is part of the olfactory system. J Comp Neurol 494:834–844

    Article  PubMed  Google Scholar 

  • Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci U S A 106:2041–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Ma M (2004) Molecular organization of the olfactory septal organ. J Neurosci 24:8383–8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uytingco CR, Puche AC, Munger SD (2016) Interglomerular connectivity within the canonical and GC-D/necklace olfactory subsystems. PLoS ONE 11:e0165343

    Article  PubMed  PubMed Central  Google Scholar 

  • Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063–4072

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Liu Z, Ng YH, Sudhof TC (2020) A synaptic circuit required for acquisition but not recall of social transmission of food preference. Neuron 107(144–157):e144

    Article  Google Scholar 

  • Zheng LM, Ravel N, Jourdan F (1987) Topography of centrifugal acetylcholinesterase-positive fibres in the olfactory bulb of the rat: Evidence for original projections in atypical glomeruli. Neuroscience 23:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AD, Nagy CR, Munger SD (2020) Sensory neurons expressing the atypical olfactory receptor guanylyl cyclase D are required for the acquisition of odor preferences by mice in diverse social contexts. Physiol Behav 227:113150

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Institute on Deafness and Other Communication Disorders: R01 DC005633 and T32 DC015994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Munger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

No human or animal studies were conducted for this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerman, A.D., Munger, S.D. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res 383, 549–557 (2021). https://doi.org/10.1007/s00441-020-03388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03388-2

Keywords

Navigation