Skip to main content
Log in

High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the Peyer’s patches of the small intestine, specialized epithelial cells, the membranous (M) cells, sample antigenic matter from the gut lumen and bring it into contact with cells of the immune system, which are then capable of initiating specific immune reactions. Using autofluorescence 2-photon (A2P) microscopy, we imaged living intestinal mucosa at a 0.5-μm resolution. We identified individual M cells without the aid of a marker and in vivo analyzed their sampling function over hours. Time-lapse recordings revealed that lymphocytes associated with M cells display a remarkable degree of motility with average speed rates of 8.2 μm/min, to form new M cell–associated lymphocyte clusters within less than 15 min. The lymphocytes drastically deform the M cells’ cytoplasm and laterally move from one lymphocyte cluster to the next. This implies that the micro-compartment beneath M cells is a highly efficient container to bring potentially harmful antigens into contact with large numbers of immunocompetent cells. Our setup opens a new window for high-resolution 3D imaging of functional processes occurring in lymphoid and mucosal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bölke T, Krapf L, Orzekowsky-Schroeder R, Vossmeyer T, Dimitrijevic J, Weller H, Schüth A, Klinger A, Hüttmann G, Gebert A (2014) Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy. Beilstein J Nanotechnol 5:2016–2025

    Article  Google Scholar 

  • Brandtzaeg P, Baekkevold ES, Farstad IN, Jahnsen FL, Johanson FE, Nilsen EM, Yamanaka T (1999) Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol Today 20:141–151

    Article  CAS  Google Scholar 

  • Clark MA, Jepson MA, Simmons NL, Booth TA, Hirst BH (1993) Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem 41:1679–1687

    Article  CAS  Google Scholar 

  • Da Silva C, Wagner C, Bonnardel J, Gorvel JP, Lelouard H (2017) The Peyer’s patch mononuclear phagocyte system at steady state and during infection. Front Immunol 8:1254

    Article  Google Scholar 

  • Edelblum KL, Shen L, Weber CR, Marchiando AM, Clay BS, Wang Y, Prinz I, Malissen B, Sperling AI, Turner JR (2012) Dynamic migration of γδ intraepithelial lymphocytes requires occludin. Proc Natl Acad Sci U S A 109:7097–7102

    Article  CAS  Google Scholar 

  • Gebert A, Hach G, Bartels H (1992) Co-localization of vimentin and cytokeratins in M-cells of rabbit gut-associated lymphoid tissue (GALT). Cell Tissue Res 269:331–340

    Article  CAS  Google Scholar 

  • Gebert A, Rothkötter HJ, Pabst R (1996) M cells in Peyer’s patches of the intestine. Int Rev Cytol 167:91–159

    Article  CAS  Google Scholar 

  • Gebert A, Fassbender S, Werner K, Weißferdt A (1999) The development of M cells in Peyer’s patches is restricted to specialized dome-associated crypts. Am J Pathol 154:1573–1582

    Article  CAS  Google Scholar 

  • Germain RN, Miller MJ, Dustin ML, Nussenzweig MC (2006) Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6:497–507

    Article  CAS  Google Scholar 

  • Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    Article  CAS  Google Scholar 

  • Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394

    Article  CAS  Google Scholar 

  • Jepson MA, Mason CM, Bennett MK, Simmons NL, Hirst BH (1992) Co-expression of vimentin and cytokeratins in M cells of rabbit intestinal lymphoid follicle-associated epithelium. Histochem J 24:33–39

    Article  CAS  Google Scholar 

  • Kernéis S, Bogdanova A, Colucci-Guyon E, Kraehenbuhl JP, Pringault E (1996) Cytosolic distribution of villin in M cells from mouse Peyer’s patches correlates with the absence of a brush border. Gastroenterology 110:515–521

    Article  Google Scholar 

  • Kernéis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952

    Article  Google Scholar 

  • Klinger A, Orzekowsky-Schroeder R, von Smolinski D, Blessenohl M, Schueth A, Koop N, Huettmann G, Gebert A (2012) Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy. Histochem Cell Biol 137:269–278

    Article  CAS  Google Scholar 

  • Klinger A, Krapf L, Orzekowsky-Schroeder R, Koop N, Vogel A, Hüttmann G (2015) Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation. J Biomed Opt 11:1160001

    Google Scholar 

  • Lelouard H, Fallet M, de Bovis B, Méresse S, Gorvel JP (2012) Peyer’s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142:592–601

    Article  CAS  Google Scholar 

  • Mantis NJ, Wagner J (2004) Analysis of adhesion molecules involved in leukocyte homing into the basolateral pockets of mouse Peyer’s patch M cells. J Drug Target 12:79–87

    Article  CAS  Google Scholar 

  • Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    Article  CAS  Google Scholar 

  • Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:345–348

    Article  CAS  Google Scholar 

  • Nicoletti C (2000) Unsolved mysteries of intestinal M cells. Gut 47:735–739

    Article  CAS  Google Scholar 

  • Orzekowsky-Schroeder R, Klinger A, Martensen B, Blessenohl M, Gebert A, Vogel A, Hüttmann G (2011) In vivo spectral imaging of different cell types in the small intestine by two-photon excited autofluorescence. J Biomed Opt 16:116025

    Article  Google Scholar 

  • Owen RL (1977) Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 72:440–451

    Article  CAS  Google Scholar 

  • Regoli M, Bertelli E, Borghesi C, Nicoletti C (1995) Three-dimensional (3D-) reconstruction of M cells in rabbit Peyer’s patches: definition of the intraepithelial compartment of the follicle-associated epithelium. Anat Rec 243:19–26

    Article  CAS  Google Scholar 

  • Roy MJ, Ruiz A (1986) Dome epithelial M cells dissociated from rabbit gut-associated lymphoid tissues. Am J Vet Res 47:2577–2583

    CAS  PubMed  Google Scholar 

  • Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC, Dustin ML (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6:707–714

    Article  CAS  Google Scholar 

  • Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:1873–1876

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Hildner, H. Manfeldt and C. Örün for excellent technical assistance.

Funding

This study was supported by the German research foundation (DFG), Projects No.: Ge 647/9; Ge 647/10; HU 629/3; HU 629/4; INST 1757/15-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Fischer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All animal experiments were approved by the Institutional Animal Experiment Committee of the university and received approval of the local authorities (Ministerium für Umwelt, Naturschutz und Landwirtschaft Schleswig-Holstein V742-72241.122 and Thüringer Landesamt für Verbraucherschutz 02/003/14).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 184 kb)

ESM 2

(PDF 1012 kb)

ESM 3

(PDF 2345 kb)

ESM 4

(PDF 3182 kb)

ESM 5

(MOV 9549 kb)

ESM 6

(MOV 13632 kb)

ESM 7

(MOV 10768 kb)

ESM 8

(MOV 9528 kb)

ESM 9

(MOV 1043 kb)

ESM 10

(MOV 3318 kb)

ESM 11

(MOV 5781 kb)

ESM 12

(MOV 156 kb)

ESM 13

(MOV 3862 kb)

ESM 14

(MOV 16742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, T., Klinger, A., von Smolinski, D. et al. High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures. Cell Tissue Res 380, 539–546 (2020). https://doi.org/10.1007/s00441-020-03167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03167-z

Keywords

Navigation