Skip to main content
Log in

Reciprocal surface expression of arylsulfatase A and ubiquitin in normal and defective mammalian spermatozoa

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Defective mammalian spermatozoa are marked on their surface by proteolytic chaperone ubiquitin. To identify potential ubiquitinated substrates in the defective spermatozoa, we resolved bull sperm protein extracts on a two-dimensional gel and isolated a 64–65-kDa spot (p64) corresponding to one of the major ubiquitin-immunoreactive bands observed in the one-dimensional Western blots. Immune serum raised against this protein recognized a prominent, possibly glycosylated band/spot in the range of 55–68 kDa, consistent with the original spot used for immunization. Internal sequences obtained by Edman degradation of this spot matched the sequence of arylsulfatase A (ARSA), the sperm acrosomal enzyme thought to be important for fertility. By immunofluorescence, a prominent signal was detected on the acrosomal surface (boar and bull) and on the sperm tail principal piece (bull). A second immune serum raised against a synthetic peptide corresponding to an immunogenic internal sequence (GTGKSPRRTL) of the porcine ARSA also labeled sperm acrosome and principal piece. Both sera showed diminished immunoreactivity in the defective bull spermatozoa co-labeled with an anti-ubiquitin antibody. Western blotting and image-based flow cytometry (IBFC) confirmed a reduced ARSA immunoreactivity in the immotile sperm fraction rich in ubiquitinated spermatozoa. Larger than expected ARSA-immunoreactive bands were found in sperm protein extracts immunoprecipitated with anti-ubiquitin antibodies and affinity purified with matrix-bound, recombinant ubiquitin-binding UBA domain. These bands did not show the typical pattern of ARSA glycosylation but overlapped with bands preferentially binding the Lens culinaris agglutinin (LCA) lectin. By both epifluorescence microscopy and IBFC, the LCA binding was increased in the ubiquitinated spermatozoa with diminished ARSA immunoreactivity. ARSA was also found in the epididymal fluid suggesting that in addition to intrinsic ARSA expression in the testis, epididymal spermatozoa take up ARSA on their surface during the epididymal passage. We conclude that sperm surface ARSA is one of the ubiquitinated sperm surface glycoproteins in defective bull spermatozoa. Defective sperm surface thus differs from normal sperm surface by increased ubiquitination, reduced ARSA binding, and altered glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, Yi YJ, Sutovsky P (2008) Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol 215(3):684–696

    CAS  PubMed  Google Scholar 

  • Belmonte SA, Ramano P, Sosa MA (2002) Compartmentalization of lysosomal enzymes in cauda epididymis of normal and castrated rats. Arch Androl 48(3):193–201

    CAS  PubMed  Google Scholar 

  • Brandon CIJ, Srivastava PN, Heusner GL, Fayrer-Hosken RA (1997) Extraction and quantification of acrosin, beta-N-acetylglucosaminidase, and arylsulfatase-A from equine ejaculated spermatozoa. J Exp Zool 279:301–308

    CAS  PubMed  Google Scholar 

  • Carmona E, Weerachatyanukul W, Soboloff T, Fluharty AL, White D, Promdee L, Ekker M, Berger T, Buhr M, Tanphaichitr N (2002a) Arylsulfatase A is present on the pig sperm surface and is involved in sperm-zona pellucida binding. Dev Biol 247(1):182–196

    CAS  PubMed  Google Scholar 

  • Carmona E, Weerachatyanukul W, Xu H, Fluharty A, Anupriwan A, Shoushtarian A, Chakrabandhu K, Tanphaichitr N (2002b) Binding of arylsulfatase A to mouse sperm inhibits gamete interaction and induces the acrosome reaction. Biol Reprod 66:1820–1827

    CAS  PubMed  Google Scholar 

  • Castellon EA, Balbontin JB (2000) Secretion of glycosidases in human epididymal cell cultures. Arch Androl 45(1):35–42

    CAS  PubMed  Google Scholar 

  • Cornwall GA (2014) Role of posttranslational protein modifications in epididymal sperm maturation and extracellular quality control. Adv Exp Med Biol 759:159–180

    CAS  PubMed  Google Scholar 

  • da Silveira JC, de Avila A, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ (2018) Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol 236(1):R15–R27

    PubMed  Google Scholar 

  • Dacheux JL, Belleannee C, Guyonnet B, Labas V, Teixeira-Gomes AP, Ecroyd H, Druart X, Gatti JL, Dacheux F (2012) The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med 58(4):197–210

    CAS  PubMed  Google Scholar 

  • Dudkiewicz A (1984) Purification of boar acrosomal arylsulfatase A and possible role in the penetration of cumulus cells. Biol Reprod 30(4):1005–1014

    CAS  PubMed  Google Scholar 

  • Edman P (1949) A method for the determination of amino acid sequence in peptides. Arch Biochem 22(3):475

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Srivastava PN (1979) Isolation, characterization and the role of rabbit testicular arylsulphatase A in fertilization. Biochem J 181(2):331–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraile B, Martin R, Miguel MPD, Arenas MI, Bethencourt FR, Peinado F, Paniagua R, Santamaria L (1996) Light and electron microscopic immunohistochemical localization of protein gene product 9.5 and ubiquitin immunoreactivities in the human epididymis and vas deferens. Biol. Reprod 55(2):291–297

    CAS  PubMed  Google Scholar 

  • Frenette G, Lessard C, Sullivan R (2002) Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod 67(1):308–313

    CAS  PubMed  Google Scholar 

  • Gadella BM, Colenbrander B, LMv G, Lopes-Cardozo M (1993) Boar seminal vesicles secrete arylsulfatases into seminal plasma: evidence that desulfation of seminolipid occurs only after ejaculation. Biol Reprod 48(3):483–489

    CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    CAS  PubMed  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Sprigs Harbor Laboratory, Cold Springs Harbor, New York

    Google Scholar 

  • Hermo L (1995) Structural features and functions of principal cells of the intermediate zone of the epididymis of adult rats. Anat Rec 242(4):515–530

    CAS  PubMed  Google Scholar 

  • Hermo L, Jacks D (2002) Nature’s ingenuity: bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev 63(3):394–410

    CAS  PubMed  Google Scholar 

  • Jones R (2004) Sperm survivial versus degradation in the mammalian epididymis: a hypothesis. Biol Reprod 71(5):1405–1411

    CAS  PubMed  Google Scholar 

  • Kaur SP, Chaudhry PS, Anand SR (1976) Acrosomal hydrolases in buffalo spermatozoa. Experientia 32(4):436–438

    CAS  PubMed  Google Scholar 

  • Kerns K, Zigo M, Drobnis EZ, Sutovsky M, Sutovsky P (2018) Zinc ion flux during mammalian sperm capacitation. Nat Commun 9(1):2061

    PubMed  PubMed Central  Google Scholar 

  • Marini PE, Cabada MO (2003) One step purification and biochemical characterization of a spermatozoa-binding protein from porcine oviductal epithelial cells. Mol Reprod Dev 66(4):383–390

    CAS  PubMed  Google Scholar 

  • Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins form the calnexin cycle. Science 299(5611):1397–1400

    CAS  PubMed  Google Scholar 

  • Ngernsoungnern A, Weerachatyanukul W, Saewu A, Thitilertdecha S, Sobhon P, Sretarugsa P (2004) Rat sperm AS-A: subcellular localization in testis and epididymis and surface distribution in epididymal sperm. Cell Tissue Res 318(2):353–363

    PubMed  Google Scholar 

  • Nikolajczyk BS, O'Rand MG (1992) Characterization of rabbit testis beta-galactosidase and arylsulfatase A: purification adn localization in spermatozoa during the acrosome reaction. Biol Reprod 46(3):366–378

    CAS  PubMed  Google Scholar 

  • Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299(5611):1394–1397

    CAS  PubMed  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    CAS  PubMed  Google Scholar 

  • Pickart CM (1998) Polyubiquitin chains. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York, pp 19–63

    Google Scholar 

  • Rattanachaiyanont M, Weerachatyanukul W, Leveille M-C, Taylor T, D'Amours D, Rivers D, Leader A, Tanphaichitr N (2001) Anti-SLIP1-reactive proteins exist on human sperm and are involved in zona-pellucida binding. Mol Hum Reprod 7:633–640

    CAS  PubMed  Google Scholar 

  • Rosenkrans CF Jr, Zeng GQ, MC GT, Schoff PK, First NL (1993) Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod 49(3):459–462

    CAS  PubMed  Google Scholar 

  • Santamaria L, Martin R, Paniagua R, Fraile B, Nistal M, Terenghi G, Polak JM (1993) Protein gene product 9.5 and ubiquitin immunoreactivities in rat epididymis epithelium. Histochemistry 100(2):131–138

    CAS  PubMed  Google Scholar 

  • Schenk M, Koppisetty CA, Santos DC, Carmona E, Bhatia S, Nyholm PG, Tanphaichitr N (2009) Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study. Glycoconj J 26(8):1029–1045

    CAS  PubMed  Google Scholar 

  • Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P (2016) Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A 113(36):E5261–E5270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61(9):1025–1041

    CAS  PubMed  Google Scholar 

  • Sullivan R (2016) Epididymosomes: role of extracellular microvesicles in sperm maturation. Front Biosci (Schol Ed) 8:106–114

    Google Scholar 

  • Sutovsky P (2004) Visualization of sperm accessory structures in the mammalian spermatids, spermatozoa, and zygotes by immunofluorescence, confocal, and immunoelectron microscopy. Methods Mol Biol 253:59–77

    PubMed  Google Scholar 

  • Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Shatten G (2001) A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci 15(Pt 1):5–7

    Google Scholar 

  • Sutovsky P, Turner RM, Hameed AS, Sutovsky M (2003) Differential ubiquitination of stallion sperm proteins: possible implications for fertility and reproductive seasonality. Biol Reprod 68:688–698

    CAS  PubMed  Google Scholar 

  • Tantibhedhyangkul J, Weerachatyanukul W, Carmona E, Xu H, Anupriwan A, Michaud D, Tanphaichitr N (2002) Role of sperm surface arylsulfatase A in mouse sperm-zona pellucida binding. Biol Reprod 67:212–219

    CAS  PubMed  Google Scholar 

  • Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69:254–260

    CAS  PubMed  Google Scholar 

  • Tulsiani DR (2003) Glycan modifying enzymes in luminal fluid of rat epididymis: are they involved in altering sperm surface glycoproteins during maturation? Microsc Res Tech 61(1):18–27

    CAS  PubMed  Google Scholar 

  • Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper JW, Cross JC, Tyers M (1999) Deletion of the Cu11 in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol 9(20):1191–1194

    CAS  PubMed  Google Scholar 

  • Weerachatyanukul W, Xu H, Anupriwan A, Carmona E, Wade M, Hermo L, SMd S, Rippstein P, Sobhon P, Sretarugsa P, Tanphaichitr N (2003) Acquisition of arylsulfatase A onto the mouse sperm surface during epididymal transit. Biol Reprod 69:1183–1192

    CAS  PubMed  Google Scholar 

  • White D, Weerchatyanukul W, Gadella B, Kamolvarin N, Attar M, Tanphaichitr N (2000) Role of sperm sulfogalactosylglycerolipid in mouse sperm-zona pellucida binding. Biol Reprod 63:147–155

    CAS  PubMed  Google Scholar 

  • Wu A, Anupriwan A, Iamsaard S, Chakrabandhu K, Santos DC, Rupar T, Tsang BK, Carmona E, Tanphaichitr N (2007) Sperm surface arylsulfatase A can disperse the cumulus matrix of cumulus oocyte complexes. J Cell Physiol 213(1):201–211

    CAS  PubMed  Google Scholar 

  • Xu H, Liu F, Srakaew N, Koppisetty C, Nyholm PG, Carmona E, Tanphaichitr N (2012) Sperm arylsulfatase A binds to mZP2 and mZP3 glycoproteins in a nonenzymatic manner. Reproduction 144(2):209–219

    CAS  PubMed  Google Scholar 

  • Yamato K, Handa S, Yamakawa T (1974) Purification of arylsulfatase A from boar testis and its activities toward semiolipid and sulfatide. J Biochem (Tokyo) 75(6):1241–1247

    CAS  Google Scholar 

  • Yang CH, Srivastava PN (1976) Purification and properties of arylsulphatase A from rabbit testis. Biochem J 159(1):133–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi YJ, Manandhar G, Sutovsky M, Li R, Jonakova V, Oko R, Park CS, Prather RS, Sutovsky P (2007) Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol Reprod 77(5):780–793

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Mutsuoka K, Yoshida M, Tanaka K, Tai T (2002) E3 ubiquitin ligase that recognizes sugar chains. Nature 418(6896):438–442

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Mizushima T, Tanaka K (2019) Sugar-recognizing ubiquitin ligases: action mechanisms and physiology. Front Physiol 10:104

    PubMed  PubMed Central  Google Scholar 

  • Zigo M, Jonakova V, Manaskova-Postlerova P (2011) Electrophoretic and zymographic characterization of proteins isolated by various extraction methods from ejaculated and capacitated boar sperms. Electrophoresis 32(11):1309–1318

    CAS  PubMed  Google Scholar 

  • Zimmerman SW, Manandhar G, Yi YJ, Gupta SK, Sutovsky M, Odhiambo JF, Powell MD, Miller DJ, Sutovsky P (2011) Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS One 6(2):e17256

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Francis Pau (Oregon National Primate Research Center, Beaverton, OR) for help with rabbit immunization, Dr. Jan Pohl (Microchemical Facility, Emory University School of Medicine, Atlanta, GA) for peptide sequencing, Ms. Kathryn Craighead for manuscript editing, and Mr. Heinz Leigh and Ms. Nicole Leitman for technical assistance.

Funding

This work was in part supported grant #13324-2007 from The Missouri Life Sciences Research Board, National Research Initiative Competitive Grants no. 2007-35203-18274 and no. 2011-67015-20025 from the USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-23231 from the USDA NIFA, and seed funding from the F21C program of the University of Missouri-Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Zigo.

Ethics declarations

Conflict of interest

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All studies involving vertebrate animals were completed under the strict guidance of an Animal Care and Use protocol, and Antibody Production Protocol (included in the Supplementary data file) approved by the Animal Care and Use Committee (ACUC) of the University of Missouri. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1624 kb)

ESM 2

(PDF 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelsey, K.M., Zigo, M., Thompson, W.E. et al. Reciprocal surface expression of arylsulfatase A and ubiquitin in normal and defective mammalian spermatozoa. Cell Tissue Res 379, 561–576 (2020). https://doi.org/10.1007/s00441-019-03144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03144-1

Keywords

Navigation