Skip to main content
Log in

Expression patterns of l-amino acid receptors in the murine STC-1 enteroendocrine cell line

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Regulation of gut function depends on the detection and response to luminal contents. Luminal l-amino acids (l-AA) are detected by several receptors including metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4), calcium-sensing receptor (CaSR), GPRC family C group 6 subtype A receptor (GPRC6A) and umami taste receptor heterodimer T1R1/T1R3. Here, we show that murine mucosal homogenates and STC-1 cells, a murine enteroendocrine cell line, express mRNA for all l-AA receptors. Immunohistochemical analysis demonstrated the presence of all l-AA receptors on STC-1 with CaSR being most commonly expressed and T1R1 least expressed (35% versus 15% of cells); mGluRs and GPRC6a were intermediate (~ 20% of cells). Regarding coexpression of l-AA receptors, the mGluRs and T1R1 were similarly coexpressed with CaSR (10–12% of cells) whereas GPRC6a was coexpressed least (7% of cells). mGluR1 was coexpressed with GPRC6a in 11% of cells whereas coexpression between other receptors was less (2–8% of cells). CaSR and mGluR1 were coexpressed with glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in 20–25% of cells whereas T1R1 and GPRC6a were coexpressed with GLP-1 and PYY less (8–12% of cells). Only mGluR4 showed differential coexpression with GLP-1 (13%) and PYY (21%). l-Phenylalanine (10 mM) caused a 3-fold increase in GLP-1 release, which was strongly inhibited by siRNA to CaSR indicating functional coupling of CaSR to GLP-1 release. The results suggest that not all STC-1 cells express (and coexpress) l-AA receptors to the same extent and that the pattern of response likely depends on the pattern of expression of l-AA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acar I, Cetinkaya A, Lay I, Ileri-Gurel E (2018) The role of calcium sensing receptors in GLP-1 and PYY secretion after acute intraduodenal administration of L-tryptophan in rats. Nutr Neurosci dio. https://doi.org/10.1080/1028415X.2018.1521906

  • Akiba Y, Inoue T, Kaji I, Higashiyama M, Narimatsu K, Iwamoto K, Watanabe M, Guth PH, Engel E, Kuwahara A, Kaunitz JD (2015) Short-chain fatty acid sensing in rat duodenum. J Physiol 593:585–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alamshah A, Spreckley E, Norton M, Kinsey-Jones JS, Amin A, Ramgulam A, Cao Y, Johnson R, Saleh K, Akalestou E, Malik Z, Gonzalez-Abuin N, Jomard A, Amarsi R, Moolla A, Sargent PR, Gray GW, Bloom SR, Murphy KG (2017) L-phenylalanine modulates gut hormone release and glucose tolerance and suppresses food intake through the calcium-sensing receptor in rodents. Int J Obesity 41:1693–1701

    CAS  Google Scholar 

  • Avau B, Rotondo A, Thijs T, Andrews CN, Janssen P, Tack J, Depoortere I (2015) Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci Rep 5:15985. https://doi.org/10.1038/srep15985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bala V, Rajagopal S, Kumar DP, Nalli AD, Mahavadi S, Sanyal AJ, Grider JR, Murthy KS (2014) Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front Physiol 5:420. https://doi.org/10.3389/fphys.2014.00420

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, Julius D (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beumer J, Artegiani B, Post Y, Reimann F, Gribble F, Nguyen TN, Zeng H, Van den Born M, Van Es JH, Clevers H (2018) Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signaling gradient. Nature Cell Biol20:909–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezencon C, leCoutre J, Demak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Sens 32:41–49

    CAS  Google Scholar 

  • Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, Wang F, Liddle RA (2015) Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 125:782–786

    PubMed  PubMed Central  Google Scholar 

  • Choi S, Lee M, Shiu AL, Yo SJ, Aponte GW (2007) Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes. Am J Phys 292:G98–G112

    CAS  Google Scholar 

  • Clemmensen C, Smajilovic S, Wellendorph P, Brauner-Osborne H (2014) The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171:1129–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox HM (2016) Neuroendocrine peptide mechanisms controlling intestinal epithelial function. Curr Opin Pharmacol 31:50–56

    CAS  PubMed  Google Scholar 

  • Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP (2013) Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulated CCK secretion. Am J Phys 304:G271–G282

    CAS  Google Scholar 

  • Diakogiannaki E, Pais R, Tolhurst G, Parker HE, Horscroft J, Rauscher B, Zietek T, Daniel H, Gribble FM, Reimann F (2013) Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56:2688–2696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33:302–305

    CAS  PubMed  Google Scholar 

  • Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, Pedersen J, Windeløv JA, Füchtbauer EM, Olsen J, Sundler F, Christensen JP, Wierup N, Olsen JV, Holst JJ, Zigman JM, Poulsen SS, Schwartz TW (2012) A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY and neurotensin but not somatostatin. Endocrinology 153:5782–5795

    CAS  PubMed  Google Scholar 

  • Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB (2017) Costorage of enteroendocrine hormones evaluated at the cell and subcellular levels in male mice. Endocrinology 158:2113–2123

    PubMed  Google Scholar 

  • Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    CAS  PubMed  Google Scholar 

  • Gribble FM, Reimann F (2017) Signaling in the gut endocrine axis. Physiol Behav 176:183–188

    CAS  PubMed  Google Scholar 

  • Gwynne RM, Bornstein JC (2007) Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Phys 292:G1162–G1172

    CAS  Google Scholar 

  • Gwynne RM, Ly KDND, Parry LJ, Bornstein JC (2017) Calcium sensing receptors mediate local inhibitory reflexes evoked by L-phenylalanine in guinea pig jejunum. Front Physiol 8:991. https://doi.org/10.3389/fphys2017.00991

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A (2017) A single-cell survey of the small intestinal epithelium. 551:333–339

  • Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CA, Parker HE, Morley TC, Yeo GS, Reimann F, Gribble FM (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153:3054–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaji I, Kaunitz JD (2017) Luminal chemosensing in the gastroduodenal mucosa. Curr Opin Gastroenterol 33:439–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kendig DM, Hurst NR, Bradley ZL, Mahavadi S, Kuemmerle JF, Lyall V, DeSimone J, Murthy KS, Grider JR (2014) Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. Am J Phys 307:G1100–G1107

    CAS  Google Scholar 

  • Kuhre RE, Wewer Albrechtsen NJ, Deacon CF, Balk-Møller E, Rehfeld JF, Reimann F, Gribble FM, Holst JJ (2016) Peptide production and secretion in GLUTag, NCI-H716 and STC-1 cells: a comparison to native L-cells. J Mol Endocrinol 56:201–201

    CAS  PubMed  Google Scholar 

  • Kusuhara Y1, Yoshida R, Ohkuri T, Yasumatsu K, Voigt A, Hübner S, Maeda K, Boehm U, Meyerhof W, Ninomiya Y (2013) Taste responses in mice lacking taste receptor subunit T1R1. J Physiol 591:1967–1985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 2016(28):620–630

    Google Scholar 

  • Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 99:4692–4696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins P, Fakhry J, Chaves de Oliveira E, Hunne B, Fothergill L, Ringuet M, d’Avila Reis D, Rehfeld JF, Callaghan B, Furness JB (2017) Analysis of enteroendocrine cell populations in the human colon. Cell Tissue Res 367:161–168

    CAS  PubMed  Google Scholar 

  • McCarthy T, Green BD, Calderwood D, Gillespier A, Cryan JF, Giblin L (2015) STC-1 cells Chapter 19. In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bioactives on health: in vitro and ex vivo models Cham (CH). Springer, Berlin, Heidleber New York, dio. https://doi.org/10.1007/978-3-319-16104-4_19

    Chapter  Google Scholar 

  • Nelsen G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zucker CS (2002) An amino-acid receptor. Nature 416:199–202

    Google Scholar 

  • Oya M, Kitaguchi T, Pais R, Reimann F, Gribble F, Tsuboi T (2013) The G protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells. J Biol Chem 288:4513–4521

    CAS  PubMed  Google Scholar 

  • Pais R, Gribble FM, Reimann F (2016) Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides 77:9–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal Choudhuri S, Delay RJ, Delay ER (2015) L-amino acids elicit diverse response patterns in taste sensory cells: a role for multiple receptors. PLoS One 10:e0130088

    PubMed  PubMed Central  Google Scholar 

  • Palmer RK (2018) A pharmacological perspective on the study of taste. Pharmacol Rev 71:20–48

    Google Scholar 

  • Pi M, Nishimoto SK, Quarles LD (2017) CPRC6A: jack of all metabolism (or master of none). Molec Metab 6:185–193

    CAS  Google Scholar 

  • Qian J, Mummalaneni SK, Alkahtani RM, Mahavadi S, Murthy KS, Grider JR, Lyall V (2016) Nicotine-induced effects on nicotinic acetylcholine receptors (nAChRs), Ca2+ and brain-derived neurotrophic factor (BDNF) in STC-1 cells. PLoS One 11:e0166565. https://doi.org/10.1371/journal.pone.016656

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM (2008) Glucose sensing in L cells: a primary cell study. Cell Metab 8:532–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rettenberger AT, Schulze W, Breer H, Haid D (2015) Analysis of the protein related receptor GPR92 in G-cells. Front Physiol 6:261. https://doi.org/10.3389/fphys.2015.00261

  • Reynaud Y, Fakhry J, Fothergill L, Callaghan B, Ringuet M, Hunne B, Bravo DM, Furness JB (2016) The chemical coding of 5-hydroxytryptamine containing enteroendocine cells in the mouse gastrointestinal tract. Cell Tissue Res 364:489–497

    CAS  PubMed  Google Scholar 

  • Roth KA, Hertz JM, Gordon JI (1990) Mapping enteroendocrine cell populations in transgenic mice reveals an unexpected degree of complexity in cellular differentiation within the gastrointestinal tract. J Cell Biol 110:1791–1801

    CAS  PubMed  Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    CAS  PubMed  Google Scholar 

  • San Gabriel A, Uneyama H, Yoshie S, Torii K (2005) Cloning and characterization of a novel mGluR1 variant from vallate papillae that functions as a receptor for L-glutamate stimuli. Chem 30:i25–i26

    CAS  Google Scholar 

  • Sbarbati A, Bramanti P, Benati D, Merigo F (2010) The diffuse chemosensory system: exploring the iceberg toward the definition of functional roles. Prog Neurobiol 91:77–89

    PubMed  Google Scholar 

  • Schneider C, O’Leary CE, von Moltke J, Liang HE, Ang QY, Turnbaugh PJ, Radhakrishnan S, Pellizzon M, Ma A, Locksley RM (2018) A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schütz B, Jurastow I, Bader S, Ringer C, von Engelhardt J, Chubanov V, Gudermann T, Diener M, Kummer W, Krasteva-Christ G, Weihe E (2015) Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front Physiol 6:87. https://doi.org/10.3389/fphys.2015.00087

  • Steensels S, Depoortere I (2018) Chemoreceptors in the gut. Annu Rev Physiol 80:117–141

    CAS  PubMed  Google Scholar 

  • Sutherland K, Young RL, Cooper NJ, Horowitz M, Blackshaw LA (2007) Phenotypic characterization of taste cells of the mouse small intestine. Am J Phys 292:G1420–G1428

    CAS  Google Scholar 

  • Symonds EL, Peiris M, Page AJ, Chia B, Dogra H, Masding A, Galanakis V, Atiba M, Bulmer D, Young RL, Blackshaw LA (2015) Mechanisms of activation of mouse and human enteroendocrine cells by nutrients. Gut 64:618–626

    CAS  PubMed  Google Scholar 

  • Wang JH, Inoue T, Higashiyama M, Guth PH, Engel E, Kaunitz JD, Akiba Y (2011) Umami receptor activation increases duodenal bicarbonate secretion via glucagon-like peptide-2 release in rats. J Pharmacol Exp Ther 339:464–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wellendorph P, Brauner-Osborne H (2009) Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Brit J Pharmacol 156:869–884

    CAS  Google Scholar 

  • Wellendorph P, Johansen LD, Brauner-Osborne H (2009) Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Molec Pharmacol 76:453–463

    CAS  Google Scholar 

  • Yamaguchi S (1970) The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J Food Sci 32:473–478

    Google Scholar 

  • Yasumatsu K, Manabe T, Yoshida R, Iwatsuki K, Uneyama H, Takahe NY (2015) Involvement of multiple taste receptors in umami taste: analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. J Physiol 593(4):1021–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young RL, Sutherland K, Pezos N, Brierley SM, Horowitz M, Rayner CK, Blackshaw LA (2009) Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 58:337–346

    CAS  PubMed  Google Scholar 

  • Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, Liu H, Tachdjian C, Li X (2008) Molecular mechanism for the umami taste synergism. Proc Natl Acad USA 105:20930–20934

    CAS  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266

    CAS  PubMed  Google Scholar 

  • Zhou HR, Pestka JJ (2015) Deoxynivalenol (vomitoxin)-induced cholecystokinin and glucagon-like peptide-1 release in the STC-1 enteroendocrine cell model is mediated by calcium-sensing receptor and transient receptor potential ankyrin-1 channel. Toxicol Sci 145:407–417

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases grants DK-15564 (KSM), DK-28300 (KSM) and DK-34153 (JRG). This work was also supported by grants to the Virginia Commonwealth University from the National Center for Advancing Translational Sciences UL1TR002649 (HW) and the Center for Clinical and Translational Research Endowment Fund of Virginia Commonwealth University (HW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Grider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. All animal procedures were performed according to a protocol approved by the Institutional Animal Care and Use Committee of Virginia Commonwealth University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Murthy, K.S. & Grider, J.R. Expression patterns of l-amino acid receptors in the murine STC-1 enteroendocrine cell line. Cell Tissue Res 378, 471–483 (2019). https://doi.org/10.1007/s00441-019-03074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03074-y

Keywords

Navigation