Skip to main content

Advertisement

Log in

Integrin-mediated regulation of epidermal wound functions

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins—the major cell adhesion receptors for the extracellular matrix—that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit.

In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agren MS, Werthen M (2007) The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. Int J Lower Extrem Wounds 6:82–97

    Article  Google Scholar 

  • Ahmed N, Pansino F, Clyde R, Murthi P, Quinn MA, Rice GE, Agrez MV, Mok S, Baker MS (2002) Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis 23:237–244

    Article  CAS  PubMed  Google Scholar 

  • AlDahlawi S, Eslami A, Hakkinen L, Larjava HS (2006) The alphavbeta6 integrin plays a role in compromised epidermal wound healing. Wound Repair Regen 14:289–297

    Article  PubMed  Google Scholar 

  • Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J (2016) Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment. Matrix Biol 51:37–46

  • Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansel JC, Tiesman JP, Olerud JE, Krueger JG, Krane JF, Tara DC, Shipley GD, Gilbertson D, Usui ML, Hart CE (1993) Human keratinocytes are a major source of cutaneous platelet-derived growth factor. J Clin Invest 92:671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aumailley M, El Khal A, Knoss N, Tunggal L (2003) Laminin 5 processing and its integration into the ECM. Matrix Biol 22:49–54

    Article  CAS  PubMed  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  • Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151

    CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, Svensson M, Herken R, Sasaki T, Timpl R, Werner S, Fassler R (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 19:3990–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuss JM, Gallo J, DeLisser HM, Klimanskaya IV, Folkesson HG, Pittet JF, Nishimura SL, Aldape K, Landers DV, Carpenter W (1995) Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci 108:2241–2251

    CAS  PubMed  Google Scholar 

  • Brown LF, Dubin D, Lavigne L, Logan B, Dvorak HF, Van De Water L (1993) Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am J Pathol 142:793–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgeson RE, Christiano AM (1997) The dermal-epidermal junction. Curr Opin Cell Biol 9:651–658

    Article  CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  • Carter WG, Kaur P, Gil SG, Gahr PJ, Wayner EA (1990a) Distinct functions for integrins a3b1 in focal adhesions and a6b4/bullous antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J Cell Biol 111:3141–3154

    Article  CAS  PubMed  Google Scholar 

  • Carter WG, Wayner EA, Bouchard TS, Kaur P (1990b) The role of integrins a2b1 and a3b1 in cell-cell and cell-substrate adhesion of human epidermal cells. J Cell Biol 110:1387–1404

    Article  CAS  PubMed  Google Scholar 

  • Carter WG, Ryan MC, Gahr PJ (1991) Epiligrin, a new cell adhesion ligand for integrin a3b1 in epithelial basement membranes. Cell 65:599–610

    Article  CAS  PubMed  Google Scholar 

  • Cary LA, Guan JL (1999) Focal adhesion kinase in integrin-mediated signaling. Front Biosci 4:D102–113

    Article  CAS  PubMed  Google Scholar 

  • Chapman HA, Wei Y, Simon DI, Waltz DA (1999) Role of urokinase receptor and caveolin in regulation of integrin signaling. Thromb Haemost 82:291–297

    CAS  PubMed  Google Scholar 

  • Chavez-Munoz C, Kilani RT, Ghahary A (2009) Profile of exosomes related proteins released by differentiated and undifferentiated human keratinocytes. J Cell Physiol 221:221–231

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choma DP, Pumiglia K, DiPersio CM (2004) Integrin a3b1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci 117:3947–3959

    Article  CAS  PubMed  Google Scholar 

  • Choma DP, Milano V, Pumiglia KM, DiPersio CM (2007) Integrin alpha3beta1-dependent activation of FAK/Src regulates Rac1-mediated keratinocyte polarization on laminin-5. J Investig Dermatol 127:31–40

    Article  CAS  PubMed  Google Scholar 

  • Comoglio PM, Boccaccio C, Trusolino L (2003) Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol 15:565–571

    Article  CAS  PubMed  Google Scholar 

  • Cowin AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK (2006) Wound healing is defective in mice lacking tetraspanin CD151. J Investig Dermatol 126:680–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayer C, Stamenkovic I (2015) Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-beta (TGF-beta) Activation and Fibroblast Differentiation. J Biol Chem 290:13763–13778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • deHart GW, Healy KE, Jones JC (2003) The role of alpha3beta1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes. Exp Cell Res 283:67–79

    Article  CAS  PubMed  Google Scholar 

  • Delon I, Brown NH (2007) Integrins and the actin cytoskeleton. Curr Opin Cell Biol 19:43–50

    Article  CAS  PubMed  Google Scholar 

  • DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO (1997) a3b1 integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137:729–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DiPersio CM, Shao M, Di Costanzo L, Kreidberg JA, Hynes RO (2000a) Mouse keratinocytes immortalized with large T antigen acquire a3b1 integrin-dependent secretion of MMP-9/gelatinase B. J Cell Sci 113:2909–2921

    CAS  PubMed  Google Scholar 

  • DiPersio CM, van der Neut R, Georges-Labouesse E, Kreidberg JA, Sonnenberg A, Hynes RO (2000b) alpha3beta1 and alpha6beta4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J Cell Sci 113:3051–3062

    CAS  PubMed  Google Scholar 

  • DiPietro LA (1995) Wound healing: the role of the macrophage and other immune cells. Shock 4:233–240

    Article  CAS  PubMed  Google Scholar 

  • Dowling J, Yu Q-C, Fuchs E (1996) b4 integrin is required for hemidesmosomal formation, cell adhesion and cell survival. J Cell Biol 134:559–572

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145:105–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol 127:514–525

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265–266

    Article  CAS  Google Scholar 

  • Essayem S, Kovacic-Milivojevic B, Baumbusch C, McDonagh S, Dolganov G, Howerton K, Larocque N, Mauro T, Ramirez A, Ramos DM, Fisher SJ, Jorcano JL, Beggs HE, Reichardt LF, Ilic D (2005) Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK. Oncogene 25:1081–108

    Article  CAS  Google Scholar 

  • Evans ND, Oreffo RO, Healy E, Thurner PJ, Man YH (2013) Epithelial mechanobiology, skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater 28:397–409

    Article  PubMed  Google Scholar 

  • Fedele C, Singh A, Zerlanko BJ, Iozzo RV, Languino LR (2015) The alphavbeta6 integrin is transferred intercellularly via exosomes. J Biol Chem 290:4545–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmeyer L, Werner S, French LE, Beer HD (2010) Interleukin-1, inflammasomes and the skin. Eur J Cell Biol 89:638–644

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant C, Van De Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109:903–914

    Article  CAS  PubMed  Google Scholar 

  • Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62

    Article  CAS  PubMed  Google Scholar 

  • Frank DE, Carter WG (2004) Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J Cell Sci 117:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Gagnoux-Palacios L, Allegra M, Spirito F, Pommeret O, Romero C, Ortonne JP, Meneguzzi G (2001) The short arm of the laminin gamma2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J Cell Biol 153:835–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georges-Labouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M (1996) Absence of integrin a6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13:370–373

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari A, Kilani RT, Ghahary A (2009) Keratinocyte-conditioned media regulate collagen expression in dermal fibroblasts. J Investig Dermatol 129:340–347

    Article  CAS  PubMed  Google Scholar 

  • Ghahary A, Ghaffari A (2007) Role of keratinocyte-fibroblast cross-talk in development of hypertrophic scar. Wound Repair Regen 15(Suppl 1):S46–53

    Article  PubMed  Google Scholar 

  • Ghosh S, Brown R, Jones JC, Ellerbroek SM, Stack MS (2000) Urinary-type plasminogen activator (uPA) expression and uPA receptor localization are regulated by alpha 3beta 1 integrin in oral keratinocytes. J Biol Chem 275:23869–23876

    Article  CAS  PubMed  Google Scholar 

  • Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  CAS  PubMed  Google Scholar 

  • Goldfinger LE, Stack MS, Jones JCR (1998) Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol 141:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, Jones JCR (1999) A cell signal pathway involving laminin-5, a3b1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell 10:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenache DG, Zhang Z, Wells LE, Santoro SA, Davidson JM, Zutter MM (2007) Wound healing in the alpha2beta1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression. J Investig Dermatol 127:455–466

    Article  CAS  PubMed  Google Scholar 

  • Grose R, Hutter C, Bloch W, Thorey I, Watt FM, Fassler R, Brakebusch C, Werner S (2002) A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129:2303–2315

    CAS  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Hakkinen L, Koivisto L, Gardner H, Saarialho-Kere U, Carroll JM, Lakso M, Rauvala H, Laato M, Heino J, Larjava H (2004) Increased expression of beta6-integrin in skin leads to spontaneous development of chronic wounds. Am J Pathol 164:229–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamelers IH, Olivo C, Mertens AE, Pegtel DM, van der Kammen RA, Sonnenberg A, Collard JG (2005) The Rac activator Tiam1 is required for a3b1-mediated laminin-5 deposition, cell spreading, and cell migration. J Cell Biol 171:871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi S, Salo T, Kainulainen T, Epstein J, Lerner K, Larjava H (2000) Expression of alpha(v)beta6 integrin in oral leukoplakia. Br J Cancer 82:1433–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamill KJ, Hopkinson SB, Hoover P, Todorovic V, Green KJ, Jones JC (2012) Fibronectin expression determines skin cell motile behavior. J Investig Dermatol 132:448–457

    Article  CAS  PubMed  Google Scholar 

  • Has C, Sparta G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, Waters A, He Y, Anikster Y, Esser P, Straub BK, Hausser I, Bockenhauer D, Dekel B, Hildebrandt F, Bruckner-Tuderman L, Laube GF (2012) Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med 366:1508–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata S, Okamura K, Hatta M, Ishikawa H, Yamazaki J (2014) Proteolytic and non-proteolytic activation of keratinocyte-derived latent TGF-beta1 induces fibroblast differentiation in a wound-healing model using rat skin. J Pharmacol Sci 124:230–243

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Mochizuki S, Kishi K, Nakajima T, Takaishi H, D’Armiento J, Okada Y (2009) MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol 175:533–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    Article  CAS  PubMed  Google Scholar 

  • Hermes O, Schlage P, auf dem Keller U (2011) Wound degradomics - current status and future perspectives. Biol Chem 392:949–954

    Article  CAS  PubMed  Google Scholar 

  • Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43:146–155

    Article  PubMed  Google Scholar 

  • Hobbs RM, Watt FM (2003) Regulation of interleukin-1alpha expression by integrins and epidermal growth factor receptor in keratinocytes from a mouse model of inflammatory skin disease. J Biol Chem 278:19798–19807

    Article  CAS  PubMed  Google Scholar 

  • Hoye AM, Couchman JR, Wewer UM, Fukami K, Yoneda A (2012) The newcomer in the integrin family: integrin alpha9 in biology and cancer. Adv Biol Regul 52:326–339

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Griffiths M, Wu J, Farese RV Jr, Sheppard D (2000) Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol 20:755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto DV, Calderwood DA (2015) Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 36:41–47

    Article  CAS  PubMed  Google Scholar 

  • Iyer V, Pumiglia K, DiPersio CM (2005) a3b1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: a novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Janes SM, Watt FM (2004) Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol 166:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson A, DiPietro LA (2013) Apoptosis and angiogenesis: an evolving mechanism for fibrosis. FASEB J 27:3893–3901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care 3:647–661

    Article  Google Scholar 

  • Jones J, Watt FM, Speight PM (1997) Changes in the expression of alpha v integrins in oral squamous cell carcinomas. J Oral Pathol Med 26:63–68

    Article  CAS  PubMed  Google Scholar 

  • Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME (2002) An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 158:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny FN, Connelly JT (2015) Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res 360:571–582

    Article  CAS  PubMed  Google Scholar 

  • Kim LT, Wu J, Bier-Laning C, Dollar BT, Turnage RH (2000) Focal adhesion kinase up-regulation and signaling in activated keratinocytes. J Surg Res 91:65–69

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA (2009) Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 184:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiritsi D, Has C, Bruckner-Tuderman L (2013) Laminin 332 in junctional epidermolysis bullosa. Cell Adhes Migr 7:135–141

    Article  Google Scholar 

  • Kligys KR, Wu Y, Hopkinson SB, Kaur S, Platanias LC, Jones JC (2012) alpha6beta4 integrin, a master regulator of expression of integrins in human keratinocytes. J Biol Chem 287:17975–17984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q, Wen FQ, Abe S, Wang X, Atkinson JJ, Shipley JM, Senior RM, Rennard SI (2014) Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. Am J Physiol Lung Cell Mol Physiol 306:L1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Exp Rev Mol Med 13:e23

    Article  Google Scholar 

  • Koivisto L, Heino J, Hakkinen L, Larjava H (2014) Integrins in Wound Healing. Adv Wound Care 3:762–783

    Article  Google Scholar 

  • Lam E, Kilani RT, Li Y, Tredget EE, Ghahary A (2005) Stratifin-induced matrix metalloproteinase-1 in fibroblast is mediated by c-fos and p38 mitogen-activated protein kinase activation. J Investig Dermatol 125:230–238

    CAS  PubMed  Google Scholar 

  • Lamar JM, Iyer V, DiPersio CM (2008) Integrin alpha3beta1 potentiates TGFbeta-mediated induction of MMP-9 in immortalized keratinocytes. J Investig Dermatol 128:575–586

    Article  CAS  PubMed  Google Scholar 

  • Lancerotto L, Bayer LR, Orgill DP (2012) Mechanisms of action of microdeformational wound therapy. Semin Cell Dev Biol 23:987–992

    Article  PubMed  Google Scholar 

  • Legate KR, Fassler R (2009) Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci 122:187–198

    Article  CAS  PubMed  Google Scholar 

  • Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L (2002) The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 277:14467–14474

    Article  CAS  PubMed  Google Scholar 

  • Litjens SH, de Pereda JM, Sonnenberg A (2006) Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 16:376–383

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Calderwood DA, Ginsberg MH (2000) Integrin cytoplasmic domain-binding proteins. J Cell Sci 113:3563–3571

    CAS  PubMed  Google Scholar 

  • Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H (2002) Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 45:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Longmate LM, DiPersio CM (2014) Integrin regulation of epidermal functions in wounds. Adv Wound Care 3:229–246

    Article  Google Scholar 

  • Longmate WM, Monichan R, Chu ML, Tsuda T, Mahoney MG, DiPersio CM (2014) Reduced fibulin-2 contributes to loss of basement membrane integrity and skin blistering in mice lacking integrin alpha3beta1 in the epidermis. J Investig Dermatol 134:1609–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low QE, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, Kovacs EJ, DiPietro LA (2001) Wound healing in MIP-1alpha(-/-) and MCP-1(-/-) mice. Am J Pathol 159:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubin FD, Segal M, McGee DW (2003) Regulation of epithelial cell cytokine responses by the alpha3beta1 integrin. Immunology 108:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manohar A, Shome SG, Lamar J, Stirling L, Iyer V, Pumiglia K, DiPersio CM (2004) Alpha 3 beta 1 integrin promotes keratinocyte cell survival through activation of a MEK/ERK signaling pathway. J Cell Sci 117:4043–4054

    Article  CAS  PubMed  Google Scholar 

  • Margadant C, Raymond K, Kreft M, Sachs N, Janssen H, Sonnenberg A (2009) Integrin alpha3beta1 inhibits directional migration and wound re-epithelialization in the skin. J Cell Sci 122:278–288

    Article  CAS  PubMed  Google Scholar 

  • Margadant C, Charafeddine RA, Sonnenberg A (2010) Unique and redundant functions of integrins in the epidermis. FASEB J 24:4133–4152

    Article  CAS  PubMed  Google Scholar 

  • Mariotti A, Kedeshian PA, Dans M, Curatola AM, Gagnoux-Palacios L, Giancotti FG (2001) EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol 155:447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  • Martinez CE, Smith PC, Palma Alvarado VA (2015) The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol 6:290

    Article  PubMed  PubMed Central  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  CAS  PubMed  Google Scholar 

  • McLean GW, Komiyama NH, Serrels B, Asano H, Reynolds L, Conti F, Hodivala-Dilke K, Metzger D, Chambon P, Grant SG, Frame MC (2004) Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev 18:2998–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirastschijski U, Haaksma CJ, Tomasek JJ, Agren MS (2004) Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 299:465–475

    Article  CAS  PubMed  Google Scholar 

  • Missan DD, Chittur SV, DiPersio CM (2014) Regulation of fibulin-2 gene expression by integrin α3β1 contributes to the invasive phenotype of transformed keratinocytes. J Investig Dermatol 134:2418–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missan D, Mitchell K, Subbaram S, DiPersio CM (2015) Integrin α3β1 signaling through MEK/ERK determines alternative polyadenylation of the MMP-9 mRNA transcript in immortalized mouse keratinocytes. PLoS ONE 10:e0119539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell K, Szekeres C, Milano V, Svenson KB, Nilsen-Hamilton M, Kreidberg JA, DiPersio CM (2009) Alpha3beta1 integrin in epidermis promotes wound angiogenesis and keratinocyte-to-endothelial-cell crosstalk through the induction of MRP3. J Cell Sci 122:1778–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18:516–523

    Article  CAS  PubMed  Google Scholar 

  • Morgan MR, Thomas GJ, Russell A, Hart IR, Marshall JF (2004) The integrin cytoplasmic-tail motif EKQKVDLSTDC is sufficient to promote tumor cell invasion mediated by matrix metalloproteinase (MMP)-2 or MMP-9. J Biol Chem 279:26533–26539

    Article  CAS  PubMed  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    Article  CAS  PubMed  Google Scholar 

  • Mustoe TA, Gurjala A (2011) The role of the epidermis and the mechanism of action of occlusive dressings in scarring. Wound Repair Regen 19(Suppl 1):s16–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen BP, Ryan MC, Gil SG, Carter WG (2000) Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr Opin Cell Biol 12:554–562

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BP, Ren XD, Schwartz MA, Carter WG (2001) Ligation of integrin alpha 3beta 1 by laminin 5 at the wound edge activates Rho-dependent adhesion of leading keratinocytes on collagen. J Biol Chem 276:43860–43870

    Article  CAS  PubMed  Google Scholar 

  • Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152:1445–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowinski D, Lysheden AS, Gardner H, Rubin K, Gerdin B, Ivarsson M (2004) Analysis of gene expression in fibroblasts in response to keratinocyte-derived factors in vitro: potential implications for the wound healing process. J Investig Dermatol 122:216–221

    Article  CAS  PubMed  Google Scholar 

  • Nunan R, Harding KG, Martin P (2014) Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 7:1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L, Lukomski S (2013) The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. Mol Microbiol 87:672–689

    Article  CAS  PubMed  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pastar I, Stojadinovic O, Tomic-Canic M (2008) Role of keratinocytes in healing of chronic wounds. Surg Technol Int 17:105–112

    PubMed  Google Scholar 

  • Penke LR, Huang SK, White ES, Peters-Golden M (2014) Prostaglandin E2 inhibits alpha-smooth muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A. J Biol Chem 289:17151–17162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45:319–326

    Article  CAS  PubMed  Google Scholar 

  • Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 137:1445–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piwko-Czuchra A, Koegel H, Meyer H, Bauer M, Werner S, Brakebusch C, Fassler R (2009) b1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion. PLoS ONE 4:e5488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter JC, Hogg N (1998) Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol 8:390–396

    Article  CAS  PubMed  Google Scholar 

  • Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E (2000) Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol 150:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani-Neishaboor E, Hartwell R, Jalili R, Jackson J, Brown E, Ghahary A (2012) Localized controlled release of stratifin reduces implantation-induced dermal fibrosis. Acta Biomater 8:3660–3668

    Article  CAS  PubMed  Google Scholar 

  • Ramos DM, But M, Regezi J, Schmidt BL, Atakilit A, Dang D, Ellis D, Jordan R, Li X (2002) Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol 21:297–307

    Article  CAS  PubMed  Google Scholar 

  • Reish RG, Eriksson E (2008) Scars: a review of emerging and currently available therapies. Plast Reconstr Surg 122:1068–1078

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LE, Conti FJ, Silva R, Robinson SD, Iyer V, Rudling R, Cross B, Nye E, Hart IR, DiPersio CM, Hodivala-Dilke KM (2008) alpha3beta1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 118:965–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  • Russell AJ, Fincher EF, Millman L, Smith R, Vela V, Waterman EA, Dey CN, Guide S, Weaver VM, Marinkovich MP (2003) Alpha 6 beta 4 integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of alpha 3 beta 1 integrin. J Cell Sci 116:3543–3556

    Article  CAS  PubMed  Google Scholar 

  • Ruzzi L, Gagnoux-Palacios L, Pinola M, Belli S, Meneguzzi G, D’Alessio M, Zambruno G (1997) A homozygous mutation in the integrin a6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 99:2826–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salanueva IJ, Cerezo A, Guadamillas MC, del Pozo MA (2007) Integrin regulation of caveolin function. J Cell Mol Med 11:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304:274–286

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Gohring W, Mann K, Brakebusch C, Yamada Y, Fassler R, Timpl R (2001) Short arm region of laminin-5 gamma2 chain: structure, mechanism of processing and binding to heparin and proteins. J Mol Biol 314:751–763

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Kirimura Y, Mori Y (1997) The co-culture of dermal fibroblasts with human epidermal keratinocytes induces increased prostaglandin E2 production and cyclooxygenase 2 activity in fibroblasts. J Investig Dermatol 109:334–339

    Article  CAS  PubMed  Google Scholar 

  • Sauder DN, Kilian PL, McLane JA, Quick TW, Jakubovic H, Davis SC, Eaglstein WH, Mertz PM (1990) Interleukin-1 enhances epidermal wound healing. Lymphokine Res 9:465–473

    CAS  PubMed  Google Scholar 

  • Schenk S, Quaranta V (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol 13:366–375

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–68

    Article  CAS  PubMed  Google Scholar 

  • Sehgal BU, DeBiase PJ, Matzno S, Chew TL, Claiborne JN, Hopkinson SB, Russell A, Marinkovich MP, Jones JC (2006) Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J Biol Chem 281:35487–35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Shephard P, Martin G, Smola-Hess S, Brunner G, Krieg T, Smola H (2004) Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-beta and interleukin-1. Am J Pathol 164:2055–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard D (2005) Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev 24:395–402

    Article  CAS  PubMed  Google Scholar 

  • Shinde AV, Bystroff C, Wang C, Vogelezang MG, Vincent PA, Hynes RO, Van De Water L (2008) Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J Biol Chem 283:2858–2870

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa M, Isseroff RR (2005) Topical negative pressure devices: use for enhancement of healing chronic wounds. Arch Dermatol 141:1449–1453

    Article  PubMed  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Reimer CL, Peters JH, Stepp MA, Hynes RO, Van De Water L (2004) The spatial and temporal expression patterns of integrin alpha9beta1 and one of its ligands, the EIIIA segment of fibronectin, in cutaneous wound healing. J Investig Dermatol 123:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Chen C, Pal-Ghosh S, Stepp MA, Sheppard D, Van De Water L (2009) Loss of integrin alpha9beta1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J Investig Dermatol 129:217–228

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Barbosa FL, Torricelli AA, Santhiago MR, Wilson SE (2014) Transforming growth factor b and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro. Exp Eye Res 120:152–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steffensen B, Hakkinen L, Larjava H (2001) Proteolytic events of wound-healing--coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 12:373–398

    Article  CAS  PubMed  Google Scholar 

  • Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Berditchevski F (1999) Function of a3b1-tetraspan protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 146:1375–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 6:7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taipale J, Miyazono K, Heldin CH, Keski-Oja J (1994) Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol 124:171–181

    Article  CAS  PubMed  Google Scholar 

  • Thomas GJ, Lewis MP, Hart IR, Marshall JF, Speight PM (2001a) AlphaVbeta6 integrin promotes invasion of squamous carcinoma cells through up-regulation of matrix metalloproteinase-9. Int J Cancer 92:641–650

    Article  CAS  PubMed  Google Scholar 

  • Thomas GJ, Poomsawat S, Lewis MP, Hart IR, Speight PM, Marshall JF (2001b) alpha v beta 6 Integrin upregulates matrix metalloproteinase 9 and promotes migration of normal oral keratinocytes. J Investig Dermatol 116:898–904

    Article  CAS  PubMed  Google Scholar 

  • Thomas GJ, Nystrom ML, Marshall JF (2006) Alphavbeta6 integrin in wound healing and cancer of the oral cavity. J Oral Pathol Med 35:1–10

    Article  CAS  PubMed  Google Scholar 

  • Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442–452

    Article  CAS  PubMed  Google Scholar 

  • Utani A, Nomizu M, Yamada Y (1997) Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem 272:2814–2820

    Article  CAS  PubMed  Google Scholar 

  • Van De Water L, Varney S, Tomasek JJ (2013) Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention. Adv Wound Care 2:122–141

    Article  Google Scholar 

  • van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A (1996) Epithelial detachment due to absence of hemidesmosomes in integrin b4 null mice. Nat Genet 13:366–369

    Article  PubMed  Google Scholar 

  • Van Linthout S, Miteva K, Tschope C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102:258–269

    Article  PubMed  CAS  Google Scholar 

  • Vedula SR, Hirata H, Nai MH, Brugues A, Toyama Y, Trepat X, Lim CT, Ladoux B (2014) Epithelial bridges maintain tissue integrity during collective cell migration. Nat Mater 13:87–96

    Article  CAS  PubMed  Google Scholar 

  • Vidal F, Aberdam D, Miquel C, Christiano AM, Pulkkinen L, Uitto J, Ortonne JP, Meneguzzi G (1995) Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat Genet 10:229–234

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang G, Luo X, Qiu J, Tang C (2012) Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns 38:414–420

    Article  PubMed  Google Scholar 

  • Watt FM (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 21:3919–3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–9630

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA (2001) Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 12:2975–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Investig Dermatol 127:998–1008

    Article  CAS  PubMed  Google Scholar 

  • Wetzler C, Kampfer H, Stallmeyer B, Pfeilschifter J, Frank S (2000) Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Investig Dermatol 115:245–253

    Article  CAS  PubMed  Google Scholar 

  • Widgerow AD (2013) Chronic wounds - is cellular ‘reception’ at fault? Examining integrins and intracellular signalling. Int Wound J 10:185–192

    Article  PubMed  Google Scholar 

  • Winograd-Katz SE, Fassler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288

    Article  CAS  PubMed  Google Scholar 

  • Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong VW, Akaishi S, Longaker MT, Gurtner GC (2011) Pushing back: wound mechanotransduction in repair and regeneration. J Investig Dermatol 131:2186–2196

    Article  CAS  PubMed  Google Scholar 

  • Wong VW, Gurtner GC, Longaker MT (2013) Wound healing: a paradigm for regeneration. Mayo Clin Proc 88:1022–1031

    Article  PubMed  Google Scholar 

  • Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105

    CAS  PubMed  Google Scholar 

  • Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yauch RL, Berditchevsky F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable, and specific association of integrin a3b1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000) Direct extracellular contact between integrin a3b1 and TM4SF protein CD151. J Biol Chem 275:9230–9238

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  PubMed Central  Google Scholar 

  • Yurko MA, O’Toole EA, Woodley DT (2001) Phosphorylation of focal adhesion kinase (pp 125(FAK)) is increased in human keratinocytes induced to migrate by extracellular matrices. J Cell Physiol 188:24–32

    Article  CAS  PubMed  Google Scholar 

  • Zaidel-Bar R, Geiger B (2010) The switchable integrin adhesome. J Cell Sci 123:1385–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambruno G, Marchisio PC, Marconi A, Vaschieri C, Melchiori A, Giannetti A, De Luca M (1995) Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing. J Cell Biol 129:853–865

    Article  CAS  PubMed  Google Scholar 

  • Zarkoob H, Bodduluri S, Ponnaluri SV, Selby JC, Sander EA (2015) Substrate stiffness affects human keratinocyte colony formation. Cell Mol Bioeng 8:32–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigrino P, Ayachi O, Schild A, Kaltenberg J, Zamek J, Nischt R, Koch M, Mauch C (2012) Loss of epidermal MMP-14 expression interferes with angiogenesis but not with re-epithelialization. Eur J Cell Biol 91:748–756

    Article  CAS  PubMed  Google Scholar 

  • Zweers MC, Davidson JM, Pozzi A, Hallinger R, Janz K, Quondamatteo F, Leutgeb B, Krieg T, Eckes B (2007) Integrin alpha2beta1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J Investig Dermatol 127:467–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to members of the DiPersio and Van De Water laboratories, as well as to other colleagues at Albany Medical College, for valuable discussions and insights. Research was supported by NIH grants from NIAMS to L. Van De Water and C.M. DiPersio (R01AR063778) and from NCI to C.M. DiPersio (R01CA129637). We offer our apologies to the many researchers whose valuable contributions to the field could not be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michael DiPersio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiPersio, C.M., Zheng, R., Kenney, J. et al. Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 365, 467–482 (2016). https://doi.org/10.1007/s00441-016-2446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2446-2

Keywords

Navigation