Skip to main content

Advertisement

Log in

Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (PVEGF) or BMP-6 (PBMP-6) or both (PVEGF+BMP-6) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with PVEGF+BMP-6 scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the PVEGF+BMP-6 group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in PVEGF, PBMP-6 and PVEGF+BMP-6 but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with PVEGF, PBMP-6, or PVEGF+BMP-6 but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on PVEGF+BMP-6 but not on P, PVEGF, or PBMP-6. Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arzi B, Versstraete FJ, Huey DJ, Cissel DD, Athanasiou KA (2015) Regenerating mandibular bone using rhBMP-2. Part 1 Immediate reconstruction of segmental mandibulectomies. Vet Surg 44:403-409

  • Brown JL, Peach MS, Nair LS, Kumbar SG, Laurencin CT (2010) Composite scaffolds: briding nanofiber and microsphere architectures to improve bioactiity of mechanically competent constructs. J Biomed Mater Res A 95:1150–1158

    Article  PubMed  Google Scholar 

  • Cheng Y, Ramos D, Lee P, Liang D, Yu X, Kumbar SG (2014) Collagen functionalized bioactive nanofibers matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. J Biomed Nanotechnol 10:287–298

    Article  CAS  PubMed  Google Scholar 

  • Costantino PD, Hiltzik D, Govindaraj S, Moche J (2002) Bone healing and bone substitutes. Facial Plast Surg 18:13–26

    Article  PubMed  Google Scholar 

  • Cui F, Wang X, Liu X, Dighe AS, Balian G, Cui Q (2010) VEGF and BMP-6 enhance bone formation mediated by cloned mouse osteoprogenitor cells. Growth Factors 28:306–317

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Dighe AS, Irvine JN (2013) Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des 19:3374–3383

    Article  CAS  PubMed  Google Scholar 

  • Delimar D, Smoljanovic T, Bojanic I (2012) Could the use of bone morphogenetic proteins in fracture healing do more harm than good to our patients? Int Orthop 36:683

    Article  PubMed  PubMed Central  Google Scholar 

  • Diefenderfer DL, Osyczka AM, Reilly GC, Leboy PS (2003a) BMP responsiveness in human mesenchymal stem cells. Connect Tissue Res 44:305–311

    Article  CAS  PubMed  Google Scholar 

  • Diefenderfer DL, Osyczka AM, Garino JP, Leboy PS (2003b) Regulation of BMP induced transcription in cultured human bone marrow stromal cells. J Bone Joint Surg Am 85:19–28

    PubMed  Google Scholar 

  • Fajardo M, Liu CJ, Egol K (2009) Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study. Clin Orthop Relat Res 467:3071–3078

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiedler J, Roderer G, Gunther KP, Brenner RE (2002) BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 87:305–312

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner RE (2005) VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Commun 334:561–568

    Article  CAS  PubMed  Google Scholar 

  • Fong KD, Nacamuli RP, Song HM, Warren SM, Lorenz HP, Longaker MT (2003) New strategies for craniofacial repair and replacement: a brief review. J Craniofacial Surg 14:333–339

    Article  Google Scholar 

  • Hanada K, Dennis JE, Caplan AI (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 12:1606–1614

    Article  CAS  PubMed  Google Scholar 

  • Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564

    Article  CAS  PubMed  Google Scholar 

  • Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofacial Surg 1:60–68

    Article  CAS  Google Scholar 

  • Hsieh SC, Tang CM, Huang WT, Hsieh LL, Lu CM, Chang CJ, Hsu SH (2011) Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. J Biomed Mater Res A 99:576–585

    Article  PubMed  Google Scholar 

  • Jørgensen NR, Henriksen Z, Sørensen OH, Civitelli R (2004) Dexamethasone, BMP-2, and 1, 25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69:219–226

    Article  PubMed  Google Scholar 

  • Kaban LB, Glowacki J, Murray JE (1979) Repair of experimental mandibular bony defects in rats. Surg Forum 30:519–521

    CAS  PubMed  Google Scholar 

  • Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, Vanichakarn P, Park JY, Li Y, Haydon RC, He TC (2004) Characterization of the distinct orthotopic boneforming activity of 14 B.P. using recombinant adenovirus-mediated gene delivery. Gene Ther 11:1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Kempen DH, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A, Yaszemski MJ, Dhert WJ (2009) Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30:2816–2825

    Article  CAS  PubMed  Google Scholar 

  • Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150

    Article  CAS  PubMed  Google Scholar 

  • Kofron MD, Cooper JA, Kumbar SG, Laurencin CT (2007) Novel tubular composite matrix for bone repair. J Biomed Mater Res A 82:415–425

    Article  CAS  PubMed  Google Scholar 

  • Kofron MD, Griswold A, Kumbar SG, Martin K, Wen X, Laurencin CT (2009) The implications of polymer selection in regenerative medicine: a comparison of amorphous and semi-crystalline polymer for tissue regeneration. Adv Funct Mater 19:1351–1359

    Article  CAS  Google Scholar 

  • Lee DH, Park BJ, Lee MS, Lee JW, Kim JK, Yang HC, Park JC (2006) Chemotactic migration of human mesenchymal stem cells and MC3T3-E1 osteoblast-like cells induced by COS-7 cell line expressing rhBMP-7. Tissue Eng 12:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309:689–694

    Article  CAS  PubMed  Google Scholar 

  • Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ, Pittman DD, Hankins GR, Helm GA (2003) Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Ther 10:1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Lissenberg-Thunnissen SN, Gorter DJ de, Sier CF, Schipper IB (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop 35:1271–1280

  • Madhu V, Li CJ, Dighe AS, Balian G, Cui Q (2014) BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation. PLOS One 9:e103060

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7: e32616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu M, Rigutto S, Ingels A, Spruyt D, Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J, Bastianelli E, Gangji V (2013) Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone 53:391–398

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T (2008) BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283:29119–29125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–477

    Article  CAS  PubMed  Google Scholar 

  • Mizuno D, Agata H, Furue H, Kimura A, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H (2010) Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 28:34–43

    Article  CAS  PubMed  Google Scholar 

  • Moghadam HG, Urist MR, Sandor GK, Clokie CM (2001) Successful mandibular reconstruction using a BMP bioimplant. J Craniofac Surg 12:119–128

    Article  CAS  PubMed  Google Scholar 

  • Nauth A, Ristiniemi J, McKee MD, Schemitsch EH (2009) Bone morphogenetic proteins in open fractures: past, present, and future. Injury 40:27–31

    Article  Google Scholar 

  • Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS (2004) Different effects of BMP-2 on marrow stromal cells from human and rat bone. Cells Tissues Organs 176:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG (2008) Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puleo DA (1997) Dependence of mesenchymal cell responses on duration of exposure to bone morphogenetic protein-2 in vitro. J Cell Physiol 173:93–101

    Article  CAS  PubMed  Google Scholar 

  • Seamon J, Wang X, Cui F, Keller T, Dighe AS, Balian G, Cui Q (2013) Adenoviral delivery of the VEGF and BMP-6 genes to rat mesenchymal stem cells potentiates osteogenesis. Bone Marrow Res 2013:737580

    Article  PubMed  PubMed Central  Google Scholar 

  • Street J, Lenehan B (2009) Vascular endothelial growth factor regulates osteoblast survival—evidence for an autocrine feedback mechanism. J Orthop Surg Res 4:1

    Article  Google Scholar 

  • Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99:9656–9661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XX, Allen RJ Jr, Tutela JP, Sailon A, Allori AC, Davidson EH, Paek GK, Saadeh PB, McCarthy JG, Warren SM (2011a) Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis. Plast Reconstr Surg 128:395–405

  • Wang X, Cui F, Madhu V, Dighe AS, Balian G, Cui Q (2011b) Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation. Growth Factors 29:36–48

    Article  PubMed  Google Scholar 

  • Wolff KD, Ervens J, Herzog K, Hoffmeister B (1996) Experience with the osteocutaneous fibula flap: an analysis of 24 consecutive reconstructions of composite mandibular defects. J Craniomaxillofac Surg 24:330–338

    Article  CAS  PubMed  Google Scholar 

  • Young S, Patel ZS, Kretlow JD, Murphy MB, Mountziaris PM, Baggett LS, Ueda H, Tabata Y, Jansen JA, Wong M, Mikos AG (2009) Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng Part A 15:2347–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi N, Nixon AJ (2007) Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 1117:62–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Madhu V, Dighe AS, Irvine JN Jr, Cui Q (2012) Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro. Growth Factors 30:333–343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Vedavathi Madhu, Orthopaedic Surgery Research Center, University of Virginia, Charlottesville, USA and Mr. Weitao Wang, School of Medicine, University of Virginia, Charlottesville, USA for their help in the standardization of the EDC-NHS-MES cross-linking method in our group. The research is supported by Orthopaedic Research and Education Foundation/Zachary B. Friedenberg Clinician Scientist Award and by Orthopaedic Research Fund, University of Virginia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanjun Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Fishero, B.A., Christophel, J.J. et al. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair. Cell Tissue Res 364, 125–135 (2016). https://doi.org/10.1007/s00441-015-2301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2301-x

Keywords

Navigation