Skip to main content
Log in

Gene expression profiles of FABP genes in protochordates, Ciona intestinalis and Branchiostoma belcheri

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Fatty-acid-binding proteins (FABPs) are small intracellular proteins associated with the transportation of fatty acids. Members of the FABPs share similar amino acid sequences and tertiary structures and form, together with a member of the cellular retinol-binding proteins (CRBPs), the intracellular-lipid-binding protein (iLBP) family. In vertebrates, several types of FABP have been isolated and classified into three subfamilies: 2–4. In invertebrates, several FABP-related proteins have been reported in protostomes and amphioxus; however, little is known about the relationship between their phylogenetic positions and expression patterns. We have performed a genome-wide survey of FABP-related genes in protochordates: amphioxus Branchiostoma belcheri and the ascidian Ciona intestinalis. Comprehensive BLAST searches in NCBI and the Ciona Ghost Database by using amino acid sequences of all FABPs have revealed that the ascidian C. intestinalis and amphioxus B. belcheri contain six and seven FABP-related genes in their haploid genomes, respectively. Expression pattern analyses by whole-mount in situ hybridization in Ciona transparent juveniles and serial-section in situ hybridizations in adult amphioxus have revealed that all genes are mainly expressed in the postpharyngeal digestive tract. In particular, the expression of FABP-related genes of subfamily-2 (liver/ileum type) and subfamily-3 (intestinal type) in the ascidian pyloric gland and amphioxus hepatic cecum provides insight into the evolution of hepatic-related structures of chordates and FABP-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpers DH, Strauss AW, Ockner RK, Bass NM (1984) Cloning of a cDNA encoding rat intestinal fatty-acid binding protein. Proc Natl Acad Sci U S A 81:313–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • André M, Ando S, Ballagny C, Durliat M, Poupard G, Briançon C, Babin PJ (2000) Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol 44:249–252

    PubMed  Google Scholar 

  • Bernlohr DA, Angus CW, Lane MD, Bolanowski MA, Kelly TJ (1984) Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc Natl Acad Sci U S A 81:5468–5472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berrill NJ (1947) The development and growth of Ciona. J Mar Biol Assoc UK 26:616–625

    Article  CAS  Google Scholar 

  • Billich S, Wissel T, Gratzin H, Hahn U, Hagenhoff B, Lezius AG, Spener F (1988) Cloning of a full-length complementary DNA for fatty-acid binding protein from bovine heart. J Biochem 175:549–556

    CAS  Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Chan L, Wei CF, Li WH, Yang CY, Ratner P, Pownall H, Gotto AM, Smith LC (1985) Human liver fatty acid binding protein cDNA and amino acid sequence. J Biol Chem 260:2629–2632

    CAS  PubMed  Google Scholar 

  • Chmurzyńska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and poly-morphism. J Appl Genet 47:39–48

    Article  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46:592–604

    Article  PubMed  Google Scholar 

  • Donovan M, Olofsson B, Gustafson AL, Dencker L, Eriksson U (1995) The cellular retinoic acid binding proteins. J Steroid Biochem Mol Biol 53:459–465

    Article  CAS  PubMed  Google Scholar 

  • Ermak TH (1977) Glycogen deposits in the pyloric gland of the ascidian “Styela clava” (Urochordata). Cell Tissue Res 176:47–55

    Article  CAS  PubMed  Google Scholar 

  • Esteves A, Ehrlich R (2006) Invertebrate intracellular fatty acid binding proteins. Comp Biochem Physiol C 142:262–274

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T (1995) Molecular cloning, expression, and characterization of a human intestinal 15-kDa protein. Eur J Biochem 233:406–413

    Article  CAS  PubMed  Google Scholar 

  • Gee H (1996) Before the backbone. Views on the origin of the vertebrates. Chapman & Hall, London

    Google Scholar 

  • Gordon JI, Alpers DH, Ockner RK, Strauss AW (1983) The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem 258:3356–3363

    CAS  PubMed  Google Scholar 

  • Gordon JI, Elshourbagy N, Lowe JB, Liao WS, Alpers DH, Taylor JM (1985) Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J Biol Chem 260:1995–1998

    CAS  PubMed  Google Scholar 

  • Hanhoff T, Lücke C, Spener F (2002) Insights into binding of fatty acids by fatty acid binding proteins. Mol Cell Biochem 239:45–54

    Article  CAS  PubMed  Google Scholar 

  • Haunerland HH, Chisholm JM (1990) Fatty acid binding protein in flight muscle of Schistocerca gregaria. Biochim Biophys Acta 1047:233–238

    Article  CAS  PubMed  Google Scholar 

  • Haunerland NH, Spener F (2004) Fatty acid-binding proteins–insights from genetic manipulations. Prog Lipid Res 43:328–349

    Article  CAS  PubMed  Google Scholar 

  • Jefferies RPS (1991) Two types of bilateral symmetry in the metazoa: chordate and bilaterian. In: Bock GR, Marsh J (eds) Biological asymmetry and handedness. Wiley, Chichester, pp 94–127

    Google Scholar 

  • Lowe JB, Boguski MS, Seetser DA, Eshourbagy NA, Taylor JM, Gordon JI (1985) Human liver fatty acid binding protein. Isolation of a full length cDNA and comparative sequence analyses of orthologous and paralogous proteins. J Biol Chem 260:3413–3417

    CAS  PubMed  Google Scholar 

  • Madsen P, Rasmussen HH, Leffers H, Honore B, Celis JE (1992) Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol 99:299–305

    Article  CAS  PubMed  Google Scholar 

  • Nielsen C (1995) Animal evolution. Interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  • Ockner RK, Manning JA, Poppenhausen RB, Ho WKL (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver myocardium, and other tissues. Science 177:56–58

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara M, Minokawa T, Sasakura Y, Nishida H, Makabe KW (2001) A large-scale whole-mount in situ hybridization system: rapid one-tube preparation of DIG-labeled RNA probes and high throughput hybridization using 96-well silent screen plates. Zool Sci 18:187–193

    Article  CAS  Google Scholar 

  • Ogasawara M, Sasaki A, Metoki H, Shin-i T, Kohara Y, Satoh N, Satou Y (2002) Gene expression profiles in young adult Ciona intestinalis. Dev Genes Evol 212:173–185

    Article  PubMed  Google Scholar 

  • Ogasawara M, Satoh N, Shimada Y, Wang Z, Tanaka T, Noji S (2006) Rapid and stable buffer exchange system using in situ chip suitable for multicolor and large-scale whole-mount analyses. Dev Genes Evol 216:100–104

    Article  PubMed  Google Scholar 

  • Oko R, Morales CR (1994) A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev Biol 166:235–245

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Satoh N, Satou Y, Davidson B, Levine M (2003) Ciona intestinalis: an emerging model for whole-genome analyses. Trends Genet 19:376–381

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Kawashima T, Shoguchi E, Nakayama A, Satoh N (2005) An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zool Sci 22:837–843

    Article  CAS  PubMed  Google Scholar 

  • Schaap F, Vusse G, Glatz J (2002) Evolution of the family of intracellular lipid binding proteins in vertebrates. Mol Cell Biochem 239:69–77

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MC, Jamison RS, Orgebin-Crist MC, Ong DE (1994) A novel, testis-specific member of the cellular lipophilic transport protein superfamily, deduced from a complimentary deoxyribonucleic acid clone. Biol Reprod 51:239–245

    Article  CAS  PubMed  Google Scholar 

  • Shimizu F, Watanabe TK, Shinomiya H, Nakamura Y, Fujiwara T (1997) Isolation and expression of a cDNA for human brain fatty acid-binding protein (B-FABP). Biochim Biophys Acta 1354:24–28

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler G, Hotz R, Chatellard-Gruaz D, Jaconi S, Saurat JH (1993) Characterization and expression of a novel human fatty acid-binding protein: the epidermal type (E-FABP). Biochem Biophys Res Commun 190:482–487

    Article  CAS  PubMed  Google Scholar 

  • Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 5:170–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22:5114–5127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Liu YE, Goldberg ID, Shi YE (2003) Induction of mammary gland differentiation in transgenic mice by the fatty acid-binding protein MRG. J Biol Chem 278:47319–47325

    Article  CAS  PubMed  Google Scholar 

  • Wang YB, Chen SH, Lin CY, Yu JK (2012) EST and transcriptome analysis of cephalochordate amphioxus—past, present and future. Brief Funct Genom 11:96–106

    Article  CAS  Google Scholar 

  • Weisiger RA (2002) Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands. Mol Cell Biochem 239:35–43

    Article  CAS  PubMed  Google Scholar 

  • Willey A (1893) Studies on the Protochordata II. The development of the neuro-hypophysial system in Ciona intestinalis and Clavelina lepadiformis, with an account of the origin of the sense-organs in Ascidia mentula. Q J Microsc Sci 35:295–316

    Google Scholar 

  • Willmer P (1990) Invertebrate relationships. Patterns in animal evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Xiaohui L, Yi S, Juyong Z, Guang L, Yiquan W (2011) Identification of up-regulated genes in amphioxus neurula and the expression of AmphiFABP. Genes Genet Syst 86:37–46

    Article  Google Scholar 

  • Yang Y, Spitzer E, Kenney N, Zschiesche W, Li M, Kromminga A, Muller T, Spener F, Lezius A, Veerkamp JH (1994) Members of the fatty acid binding protein family are differentiation factors for the mammary gland. J Cell Biol 127:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Yongiun W, Yuequn Z, Shicui Z, Jianxiao T, Shengjuan J (2008) Tissue- and stage-specific expression of a fatty acid binding protein-like gene from amphioxus Branchiostoma belcheri. Acta Biochim Pol 55:27–34

    Google Scholar 

  • Zhang F, Lücke C, Baier LJ, Sacchettini JC, Hamilton JA (1997) Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J Biomol NMR 9:213–228

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Shi H, Liu W, Wang Y, Wang Q, Li H (2013) Differential expression of L-FABP and L-BABP between fat and lean chickens. Genet Mol Res 12:4192–4206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank staff members of the Aizu Marine Biological Station of Kumamoto University, staff members of the National Research Institute of Aquaculture, and Prof. Kinya Yasui for their help in collecting adult amphioxus specimens. We are also grateful to Prof. Nori Satoh and Kazuko Hirayama for providing the Ciona cDNA clones and juvenile specimens. Finally, we thank Aya Ishihara for her help in the identification of Ciona FABP-related genes and with the in situ hybridization procedure for Ciona juveniles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Ogasawara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Phylogenetic relationships of FABP-related proteins of ascidian C. intestinalis. Relevant Ciona gene models are indicated in bold with underlining. Phylogenetic relationships are assessed by the neighbor-joining method with bootstrap values (×1000). Subfamilies and types of iLBP-related proteins are indicated beside the human proteins (Hs human [Homo sapiens], Mm mouse [Mus musculus], Gg chick [Gallus gallus], Xl frog [Xenopus laevis], Dr zebrafish [Danio rerio], Ci ascidian [C. intestinalis] (PDF 49 kb)

Supplementary Fig. 2

Expression of ascidian FABP genes in early juveniles of C. intestinalis. Expression of each gene starts around the two-protostigmata stage. Expression patterns in early juveniles (upper panels) resemble those of 2nd ascidian stages (lower panels). White arrowheads indicate relevant expression of each gene. Bars 100 μm (upper panel), 500 μm (lower panel) (PDF 469 kb)

Supplementary Fig. 3

Serial sections of the pyloric gland with expression signals of KH.C7.15. Left panel Position and orientation of the numbered sections (as atrial siphon, bwm body-wall muscle, d dorsal, en endostyle, esp esophagus, int intestine, st stomach, l left, pg pyloric gland, px pharynx, r right, v ventral). Bars 100 μm (PDF 87 kb)

Supplementary Fig. 4

Three-dimensional (3D) models of KH.C7.153 expression regions in the pyloric gland and intestine. a Combination of regions with expression of KH.C7.153 in the pyloric gland (magenta) and intestine (sky blue). b Intestinal expression (sky blue) of KH.C7.153. c Intestinal expression (sky blue) of KH.C7.153 (yellow). d All regions of expression (magenta, sky blue) of KH.C7.153 with intestine (yellow) (PDF 371 kb)

Supplementary Fig. 5

Whole-mount in situ hybridization (WISH) analysis of amphioxus FABP genes using mixed specimens. Four adult individuals are sectioned at 2 mm thickness, and mixed and, then, specimens for WISH are randomly provided for seven genes. Discontinuous expression patterns (red underlines) based on the adjacent sections are observed for some genes. Representation of FABP gene expression is based on this experiment. The expression level is measured as three levels: strong, moderate, and none. Expression levels of strong, moderate, and none are indicated by the color intensities of black, gray, and white, respectively (PDF 344 kb)

Supplementary Fig. 6

Comparison of FABP gene expression patterns between two individuals of adult amphioxus. Each individual is divided into 2-mm-thick sections, and all section specimens are used for WISH analysis. Expression patterns of the same gene are similar but not identical between two individuals. The expression level is measured as three levels: strong, moderate, and none. Expression levels of strong, moderate, and none are indicated by the color intensities of black, gray, and white, respectively (PDF 812 kb)

Supplementary Fig. 7

Representation showing FABP gene expression patterns in amphioxus B. belcheri. Results of the expression analyses (ex. 1–3) are compared. The expression level is measured as three levels: strong, moderate, and none. Expression levels of strong, moderate, and none are indicated by the color intensities of black, gray, and white, respectively (PDF 112 kb)

Supplementary Fig. 8

Phylogenetic relationships of FABP-related proteins in metazoan species. Names of genes for which expression patterns were analyzed in this study are indicated in bold and underlined. Amino acid sequences of FABP-related proteins in human, ascidian, amphioxus, sea urchin, nematode, fly, and trematoda are used for phylogenetic analysis based on the neighbor-joining method, and relationships are assessed by using bootstrap values (×1000). Subfamilies and types of iLBP-related proteins are indicated beside the human proteins. Subfamily-2 and subfamily-3 are closely related and seem to be separate from other subfamilies, 1 and 4 (Hs human [Homo sapiens], Ci ascidian [C. intestinalis], Cs ascidian [Ciona savignyi], Bb amphioxus [B. belcheri], Bf amphioxus [B. floridae], Sp sea urchin [Strongylocentrotus purpuratus], Ce nematode [Caenorhabditis elegans], Sj blood fluke [Schistosoma japonicum], Dm fruit fly [Drosophila melanogaster]) (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orito, W., Ohhira, F. & Ogasawara, M. Gene expression profiles of FABP genes in protochordates, Ciona intestinalis and Branchiostoma belcheri . Cell Tissue Res 362, 331–345 (2015). https://doi.org/10.1007/s00441-015-2198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2198-4

Keywords

Navigation