Skip to main content

Advertisement

Log in

Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed M, Xu J, Xu PX (2012) EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 139:1965–1977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alam SA, Robinson BK, Huang J, Green SH (2007) Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol 503:832–852

    CAS  PubMed  Google Scholar 

  • Appler JM, Goodrich LV (2011) Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly. Prog Neurobiol 93:488–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Appler JM, Lu CC, Druckenbrod NR, Yu WM, Koundakjian EJ, Goodrich LV (2013) Gata3 is a critical regulator of cochlear wiring. J Neurosci 33:3679–3691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basch ML, Ohyama T, Segil N, Groves AK (2011) Canonical Notch signaling is not necessary for prosensory induction in the mouse cochlea: insights from a conditional mutant of RBPjkappa. J Neurosci 31:8046–8058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benito-Gonzalez A, Doetzlhofer A (2014) Hey1 and hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of hedgehog signaling. J Neurosci 34:12865–12876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    CAS  PubMed  Google Scholar 

  • Bok J, Dolson DK, Hill P, Rüther U, Epstein DJ, Wu DK (2007) Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development 134:1713–1722

    CAS  PubMed  Google Scholar 

  • Bouchard M, Busslinger M, Xu P, De Caprona D, Fritzsch B (2010) PAX2 and PAX8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89

    PubMed Central  PubMed  Google Scholar 

  • Bruce LL, Kingsley J, Nichols DH, Fritzsch B (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15:671–692

    CAS  PubMed  Google Scholar 

  • Bulankina AV, Moser T (2012) Neural circuit development in the mammalian cochlea. Physiology (Bethesda) 27:100–112

    CAS  Google Scholar 

  • Burton Q, Cole LK, Mulheisen M, Chang W, Wu DK (2004) The role of Pax2 in mouse inner ear development. Dev Biol 272:161–175

    CAS  PubMed  Google Scholar 

  • Cai T, Seymour ML, Zhang H, Pereira FA, Groves AK (2013) Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J Neurosci 33:10110–10122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang W, Cole LK, Cantos R, Wu DK (2004) Molecular genetics of vestibular organ development. In: Highstein SM, Fay RR, Popper AN (eds) The vestibular system, vol 19. Springer, New York, pp 11–56

    Google Scholar 

  • Chellappa R, Li S, Pauley S, Jahan I, Jin K, Xiang M (2008) Barhl1 regulatory sequences required for cell-specific gene expression and autoregulation in the inner ear and central nervous system. Mol Cell Biol 28:1905–1914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12

    PubMed  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505

    CAS  PubMed  Google Scholar 

  • Chonko KT, Jahan I, Stone J, Wright MC, Fujiyama T, Hoshino M, Fritzsch B, Maricich SM (2013) Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear. Dev Biol 381:401–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coate TM, Kelley MW (2013) Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 24:460–469

    PubMed Central  PubMed  Google Scholar 

  • Cross SH, McKie L, West K, Coghill EL, Favor J, Bhattacharya S, Brown SD, Jackson IJ (2011) The Opdc missense mutation of Pax2 has a milder than loss-of-function phenotype. Hum Mol Genet 20:223–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105:18396–18401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Defourny J, Poirrier AL, Lallemend F, Mateo Sanchez S, Neef J, Vanderhaeghen P, Soriano E, Peuckert C, Kullander K, Fritzsch B, Nguyen L, Moonen G, Moser T, Malgrange B (2013) Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nat Commun 4:1438

    PubMed  Google Scholar 

  • Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132:299–310

    CAS  PubMed  Google Scholar 

  • Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N (2009) Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 16:58–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376:86–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 8:e62046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durruthy-Durruthy R, Gottlieb A, Hartman BH, Waldhaus J, Laske RD, Altman R, Heller S (2014) Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157:964–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Echteler SM, Magardino T, Rontal M (2005) Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea. Brain Res Dev Brain Res 157:192–200

    CAS  PubMed  Google Scholar 

  • Edlund RK, Ohyama T, Kantarci H, Riley BB, Groves AK (2014) Foxi transcription factors promote pharyngeal arch development by regulating formation of FGF signaling centers. Dev Biol 390:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, Caprona DC de, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180

  • Forni PE, Scuoppo C, Imayoshi I, Taulli R, Dastrù W, Sala V, Betz UA, Muzzi P, Martinuzzi D, Vercelli AE (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci 26:9593–9602

    CAS  PubMed  Google Scholar 

  • Freyer L, Aggarwal V, Morrow BE (2011) Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development 138:5403–5414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60:423–433

    PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Glover JC (2007) Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes. In: Kaas JH (ed) Evolution of nervous systems, vol 2. Academic Press, Oxford, pp 1–24

    Google Scholar 

  • Fritzsch B, Piatigorsky J (2005) Ancestry of photic and mechanic sensation? Science 308:1113–1114

    CAS  Google Scholar 

  • Fritzsch B, Straka H (2014) Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp physiol A Neuroethology Sens Neural Behav Physiol 200:5–18

    Google Scholar 

  • Fritzsch B, Silos-Santiago I, Smeyne R, Fagan A, Barbacid M (1995) Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: a whole mount DiI and scanning electron microscopic analysis. Audit Neurosci 1:401–417

    Google Scholar 

  • Fritzsch B, Fariñas I, Reichardt LF (1997a) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17:6213–6225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I (1997b) Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds. Int J Dev Neurosci 15:563–576

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Barald K, Lomax M (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR (eds) Development of the auditory system. Springer handbook of auditory research, vol XII. Springer, New York, pp 80–145

    Google Scholar 

  • Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Tessarollo L, Coppola E, Reichardt LF (2004) Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog Brain Res 146:265–278

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Gregory D, Rosa-Molinar E (2005a) The development of the hindbrain afferent projections in the axolotl: evidence for timing as a specific mechanism of afferent fiber sorting. Zoology 108:297–306

    PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY (2005b) Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 233:570–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Hansen LA (2006a) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28:1181–1193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Pauley S, Beisel KW (2006b) Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 1091:151–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH (2006c) The evolution of the vertebrate auditory system: transformations of vestibular mechanosensory cells for sound processing is combined with newly generated central processing neurons. Int J Comp Psychol 19:1–24

    Google Scholar 

  • Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I (2010a) Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS One 5:e9377

    PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Eberl DF, Beisel KW (2010b) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci CMLS 67:3089–3099

    CAS  Google Scholar 

  • Fritzsch B, Jahan I, Pan N, Kersigo J, Duncan J, Kopecky B (2011) Dissecting the molecular basis of organ of Corti development: where are we now? Hear Res 276:16–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15:63–79

    PubMed Central  PubMed  Google Scholar 

  • Gehring WJ (2011) Chance and necessity in eye evolution. Genome Biol Evol 3:1053–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gokoffski KK, Wu HH, Beites CL, Kim J, Kim EJ, Matzuk MM, Johnson JE, Lander AD, Calof AL (2011) Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development 138:4131–4142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golub JS, Tong L, Ngyuen TB, Hume CR, Palmiter RD, Rubel EW, Stone JS (2012) Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 32:15093–15105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grothe B, Carr CE, Casseday JH, Fritzsch B, Köppl C (2004) The evolution of central pathways and their neural processing patterns. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, Berlin, pp 289-359

    Google Scholar 

  • Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:245–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groves AK, Zhang KD, Fekete DM (2013) The genetics of hair cell development and regeneration. Annu Rev Neurosci 36:361–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB (2004) Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet 13:2143–2153

    CAS  PubMed  Google Scholar 

  • Huang EJ, Liu W, Fritzsch B, Bianchi LM, Reichardt LF, Xiang M (2001) Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 128:2421–2432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hudspeth A (2014) Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci 15:600–614

    CAS  PubMed  Google Scholar 

  • Huh SH, Jones J, Warchol ME, Ornitz DM (2012) Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal. PLoS Biol 10:e1001231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda R, Pak K, Chavez E, Ryan AF (2014) Transcription factors with conserved binding sites near ATOH1 on the POU4F3 gene enhance the induction of cochlear hair cells. Mol Neurobiol. doi: 10.1007/s12035-014-8801-y

  • Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82:9–23

    CAS  PubMed  Google Scholar 

  • Ishimura R, Nagy G, Dotu I, Zhou H, Yang X-L, Schimmel P, Senju S, Nishimura Y, Chuang JH, Ackerman SL (2014) Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345:455–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahan I, Kersigo J, Pan N, Fritzsch B (2010a) Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res 341:95–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2010b) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5:e11661

    PubMed Central  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Calisto LE, Morris KA, Kopecky B, Duncan JS, Beisel KW, Fritzsch B (2012) Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS One 7:e30853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2013) Beyond generalized hair cells: molecular cues for hair cell types. Hear Res 297:30–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karis A, Pata I, Doorninck JH van, Grosveld F, Zeeuw CI de, Caprona D de, Fritzsch B (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429:615–630

  • Kelly MC, Chen P (2009) Development of form and function in the mammalian cochlea. Curr Opin Neurobiol 19:395–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly MC, Chang Q, Pan A, Lin X, Chen P (2012) Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci 32:6699–6710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kersigo J, D'Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49:326–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035

    CAS  PubMed  Google Scholar 

  • Kiernan AE, Xu J, Gridley T (2006) The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2:e4

    PubMed Central  PubMed  Google Scholar 

  • Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopecky B, Fritzsch B (2013) Embryology of the ear. In: Toriello HV, Smith SD (eds) Hereditary hearing loss and its syndromes. Oxford University Press, New York, pp 13–57

    Google Scholar 

  • Kopecky B, Johnson S, Schmitz H, Santi P, Fritzsch B (2012) Scanning thin-sheet laser imaging microscopy elucidates details on mouse ear development. Dev Dyn 241:465–480

    PubMed  Google Scholar 

  • Kopecky BJ, Jahan I, Fritzsch B (2013) Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Dev Dyn 242:132–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koundakjian EJ, Appler JL, Goodrich LV (2007) Auditory neurons make stereotyped wiring decisions before maturation of their targets. J Neurosci 27:14078–14088

    CAS  PubMed  Google Scholar 

  • Krüger M, Schmid T, Krüger S, Bober E, Braun T (2006) Functional redundancy of NSCL‐1 and NeuroD during development of the petrosal and vestibulocochlear ganglia. Eur J Neurosci 24:1581–1590

    PubMed  Google Scholar 

  • Ladhams A, Pickles J (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol 366:335–347

    CAS  PubMed  Google Scholar 

  • Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119

    CAS  PubMed  Google Scholar 

  • Leake PA, Snyder RL, Hradek GT (2002) Postnatal refinement of auditory nerve projections to the cochlear nucleus in cats. J Comp Neurol 448:6–27

    PubMed Central  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton

    Google Scholar 

  • Li S, Price SM, Cahill H, Ryugo DK, Shen MM, Xiang M (2002) Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene. Development 129:3523–3532

    CAS  PubMed  Google Scholar 

  • Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZ (2014) Characterization of transcriptomes of cochlear inner and outer hair cells. J Neurosci 34:11085–11095

    PubMed Central  PubMed  Google Scholar 

  • Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo ZX, Ruf I, Schultz JA, Martin T (2011) Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proc Biol Soc 278:28–34

    Google Scholar 

  • Ma Q, Chen Z, del Barco BI, Pompa JL de la, Anderson DJ (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maklad A, Fritzsch B (2003) Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 60:497–510

    PubMed Central  PubMed  Google Scholar 

  • Mao CA, Cho JH, Wang J, Gao Z, Pan P, Tsai WW, Frishman LJ, Klein WH (2013) Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. Development 140:541–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao Y, Reiprich S, Wegner M, Fritzsch B (2014) Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One 9:e94580

    PubMed Central  PubMed  Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moody SA (2007) Principles of developmental genetics. Academic Press, New York

    Google Scholar 

  • Nakano Y, Jahan I, Bonde G, Sun X, Hildebrand MS, Engelhardt JF, Smith RJ, Cornell RA, Fritzsch B, Banfi B (2012) A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLoS Genet 8:e1002966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nayagam BA, Muniak MA, Ryugo DK (2011) The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 278:2–20

    PubMed Central  PubMed  Google Scholar 

  • Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334:339–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28

    CAS  PubMed  Google Scholar 

  • Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472

    CAS  PubMed  Google Scholar 

  • Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK (2010) BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J Neurosci 30:15044–15051

    CAS  PubMed Central  PubMed  Google Scholar 

  • O'Neill P, Mak SS, Fritzsch B, Ladher RK, Baker CV (2012) The amniote paratympanic organ develops from a previously undiscovered sensory placode. Nat Commun 3:1041

    PubMed Central  PubMed  Google Scholar 

  • Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275:66–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan N, Jahan I, Kersigo J, Duncan J, Kopecky B, Fritzsch B (2012a) A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 expression level and duration for inner ear hair cell differentiation and viability. PLoS One 7:e30358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan N, Kopecky B, Jahan I, Fritzsch B (2012b) Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 349:415–432

    PubMed Central  PubMed  Google Scholar 

  • Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483:289–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patthey C, Schlosser G, Shimeld SM (2014) The evolutionary history of vertebrate cranial placodes. I. Cell type evolution. Dev Biol 389:82–97

    CAS  PubMed  Google Scholar 

  • Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235:2470–2482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pauley S, Kopecky B, Beisel K, Soukup G, Fritzsch B (2008) Stem cells and molecular strategies to restore hearing. Panminerva Med 50:41–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J (2000) FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. J Neurosci 20:6125–6134

    CAS  PubMed  Google Scholar 

  • Prasov L, Glaser T (2012) Pushing the envelope of retinal ganglion cell genesis: context dependent function of Math5 (Atoh7). Dev Biol 368:214–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, Griffith AJ, Fritzsch B, Kelley MW (2007) Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn 236:1905–1917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW (2010) Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30:714–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raft S, Groves AK (2014) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res (in press)

  • Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812

    CAS  PubMed  Google Scholar 

  • Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415

    CAS  PubMed  Google Scholar 

  • Reiprich S, Wegner M (2014) From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res. doi: 10.1007/s00441-014-1909-6

  • Romand R, Varela-Nieto I (2014) Development of auditory and vestibular systems. Academic Press, New York

    Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    CAS  PubMed  Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol Suppl 220:221–244

    Google Scholar 

  • Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA (2014) Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev Biol 385:200–210

    CAS  PubMed  Google Scholar 

  • Schlosser G, Patthey C, Shimeld SM (2014) The evolutionary history of vertebrate cranial placodes. II. Evolution of ectodermal patterning. Dev Biol 389:98-119

    CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    CAS  PubMed  Google Scholar 

  • Sienknecht UJ, Köppl C, Fritzsch B (2014) Evolution and development of hair cell polarity and efferent function in the inner ear. Brain Behav Evol 83:150–161

    PubMed  Google Scholar 

  • Simmons DD (2002) Development of the inner ear efferent system across vertebrate species. J Neurobiol 53:228–250

    PubMed  Google Scholar 

  • Simmons D, Duncan J, Crapon de Caprona D, Fritzsch B (2011) Development of the inner ear efferent system. In: Ryugo DK, Fay RR, Popper AN (eds) Auditory and vestibular efferents. Springer, New York, pp 187–216

    Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper A, Fay RR (eds) The cochlea. Springer handbook of auditory research. Springer, New York, pp 44-129

    Google Scholar 

  • Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD (2009) Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 328:328–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spoendlin H, Schrott A (1988) The spiral ganglion and the innervation of the human organ of Corti. Acta Otolaryngol 105:403–410

    CAS  PubMed  Google Scholar 

  • Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB (2011) Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comput Biol 7:e1002069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan S, Hu JS, Currle DS, Fung ES, Hayes WB, Lander AD, Monuki ES (2014) A BMP-FGF morphogen toggle switch drives the ultrasensitive expression of multiple genes in the developing forebrain. PLoS Comput Biol 10:e1003463

    PubMed Central  PubMed  Google Scholar 

  • Steventon B, Mayor R, Streit A (2014) Neural crest and placode interaction during the development of the cranial sensory system. Dev Biol 389:28-38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406:74–78

    CAS  PubMed  Google Scholar 

  • Torres M, Gomez-Pardo E, Gruss P (1996) Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122:3381–3391

    CAS  PubMed  Google Scholar 

  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450:50–55

    CAS  PubMed  Google Scholar 

  • von Bartheld CS, Fritzsch B (2006) Comparative analysis of neurotrophin receptors and ligands in vertebrate neurons: tools for evolutionary stability or changes in neural circuits? Brain Behav Evol 68:157–172

    Google Scholar 

  • von Bartheld CS, Patterson SL, Heuer JG, Wheeler EF, Bothwell M, Rubel EW (1991) Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat. Development 113:455–470

    Google Scholar 

  • Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ (2003) The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130:221–232

    CAS  PubMed  Google Scholar 

  • Woods C, Montcouquiol M, Kelley MW (2004) Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 7:1310–1318

    CAS  PubMed  Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    CAS  PubMed  Google Scholar 

  • Xiang M, Maklad A, Pirvola U, Fritzsch B (2003) Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci 4:2

    PubMed Central  PubMed  Google Scholar 

  • Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW (2009) Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 136:1977–1986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Xie X, Deng M, Chen X, Gan L (2010) Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 48:407–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278:21–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zetes DE, Tolomeo JA, Holley MC (2012) Structure and mechanics of supporting cells in the guinea pig organ of Corti. PLoS One 7:e49338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Q, Song L, Peng G, Sun N, Chen J, Zhang T, Sheng N, Tang W, Qian C, Qiao Y (2014) The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. ELife 3:e02224

    PubMed Central  Google Scholar 

  • Zine A, Löwenheim H, Fritzsch B (2014) Toward translating molecular ear development to generate hair cells from stem cells. In: Turksen K (ed) Adult stem cells. Springer, New York, pp 111–161

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants P30 DC 010362 (to B.F.), R03 DC 013655 (to I.J.), and R01 DC 009025 (subcontract to B.F.). The authors also acknowledge the financial support of the Office of the Vice President for Research at the University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritzsch, B., Pan, N., Jahan, I. et al. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 361, 7–24 (2015). https://doi.org/10.1007/s00441-014-2031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2031-5

Keywords

Navigation