Skip to main content
Log in

GFP-expressing S100β-positive cells of the rat anterior pituitary differentiate into hormone-producing cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Some non-endocrine cells in the pituitary anterior lobe are responsible for providing stem/progenitor cells to maintain hormone-producing cells. In particular, cells expressing S100β protein, a calcium-binding protein, have been hypothesized to be a pituitary cell resource. Accumulating data have revealed that S100β-positive cells comprise heterogeneous populations and some of them certainly show stem/progenitor characteristics in vivo. Hence, we examine whether S100β-positive cells have the capacity to differentiate into endocrine cells, by means of in vivo and in vitro experiments on transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of the S100β promoter. Immunohistochemistry of the pituitary confirmed that some S100β-positive cells expressed SOX2 (SRY [sex-determining region Y]-box 2) and had proliferative activity. Dispersed anterior lobe cells were observed by time-lapse microscopy, followed by immunostaining for hormone and pituitary-transcription-factor1 (PIT1). First, the dispersed anterior lobe cells were immunostained by an antibody against SOX2. S100β-protein co-localizes with SOX2 (about 89 %). Although 44 of 134 S100β-positive cells traced were proliferative but negative to any hormones, 14 cells were positive for one of the pituitary hormones and/or PIT1, confirming the presence of all types of hormone-producing cells. Notably, GFP-fluorescence appeared in two hormone-positive cells during culture. On the other hand, we observed hormone-producing cells that were not positive for S100β at the end of the time-lapse study, despite being initially positive. These findings suggest that S100β-positive cells cultured from the anterior lobe are capable of developing into hormone-producing cells, although this happens relatively infrequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153:1–12

    Article  CAS  PubMed  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  • Brinkmeier ML, Davis SW, Carninci P, MacDonald JW, Kawai J, Ghosh D, Hayashizaki Y, Lyons RH, Camper SA (2009) Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 93:449–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen M, Kato T, Higuchi M, Yoshida S, Yako H, Kanno N, Kato Y (2013) Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res 354:823–836

    Article  CAS  PubMed  Google Scholar 

  • Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH, Brinkmeier ML, Raetzman LT, Carninci P, Mortensen AH, Hayashizaki Y, Arnhold IJ, Mendonca BB, Brue T, Camper SA (2010) Molecular mechanisms of pituitary organogenesis: in search of novel regulatory genes. Mol Cell Endocrinol 323:4–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20:687–691

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci USA 105:2907–2912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higuchi M, Kato T, Chen M, Yako H, Yoshida S, Kanno N, Kato Y (2013) Temporospatial gene expression of Prx1 and Prx2 is involved in morphogenesis of cranial placode-derived tissues through epithelio-mesenchymal interaction during rat embryogenesis. Cell Tissue Res 353:27–40

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T (2008) Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-stellate cells. Anat Sci Int 83:256–260

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Kikuchi M, Kusumoto K, Fujiwara K, Kouki T, Kawanishi K, Yashiro T (2010) Living-cell imaging of transgenic rat anterior pituitary cells in primary culture reveals novel characteristics of folliculo-stellate cells. J Endocrinol 204:115–123

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Fujiwara K, Ilmiawati C, Kikuchi M, Tsukada T, Kouki T, Yashiro T (2011) Caveolin 3-mediated integrin beta1 signaling is required for the proliferation of folliculostellate cells in rat anterior pituitary gland under the influence of extracellular matrix. J Endocrinol 210:29–36

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Fujiwara K, Yoshida S, Higuchi M, Tsukada T, Kanno N, Yashiro T, Tateno K, Osako S, Kato T, Kato Y (2014) Isolation of dendritic cell-like S100β-positive cells in rat anterior pituitary gland. Cell Tissue Res doi:10.1007/s00441-041-1817-9

  • Horiguchi K, Kouki T, Fujiwara K, Tsukada T, Ly F, Kikuchi M, Yashiro T (2012) Expression of the proteoglycan syndecan-4 and the mechanism by which it mediates stress fiber formation in folliculostellate cells in the rat anterior pituitary gland. J Endocrinol 214:199–206

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A (1992) Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinology 131:3110–3116

    CAS  PubMed  Google Scholar 

  • Inoue K, Couch EF, Takano K, Ogawa S (1999) The structure and function of folliculo-stellate cells in the anterior pituitary gland. Arch Histol Cytol 62:205–218

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K (2007) Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 148:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Levy A (2002) Physiological implications of pituitary trophic activity. J Endocrinol 174:147–155

    Article  CAS  PubMed  Google Scholar 

  • Levy A (2008) Stem cells, hormones and pituitary adenomas. J Neuroendocrinol 20:139–140

    Article  CAS  PubMed  Google Scholar 

  • Mitsuishi H, Kato T, Chen M, Cai LY, Yako H, Higuchi M, Yoshida S, Kanno N, Ueharu H, Kato Y (2013) Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1. Cell Tissue Res 354:563–572

    Article  CAS  PubMed  Google Scholar 

  • Nolan LA, Levy A (2006) A population of non-luteinising hormone/non-adrenocorticotrophic hormone-positive cells in the male rat anterior pituitary responds mitotically to both gonadectomy and adrenalectomy. J Neuroendocrinol 18:655–661

    Article  CAS  PubMed  Google Scholar 

  • Nolan LA, Levy A (2009) The trophic effects of oestrogen on male rat anterior pituitary lactotrophs. J Neuroendocrinol 21:457–464

    Article  CAS  PubMed  Google Scholar 

  • Nolan LA, Kavanagh E, Lightman SL, Levy A (1998) Anterior pituitary cell population control: basal cell turnover and the effects of adrenalectomy and dexamethasone treatment. J Neuroendocrinol 10:207–215

    Article  CAS  PubMed  Google Scholar 

  • Nolan LA, Lunness HR, Lightman SL, Levy A (1999) The effects of age and spontaneous adenoma formation on trophic activity in the rat pituitary gland: a comparison with trophic activity in the human pituitary and in human pituitary adenomas. J Neuroendocrinol 11:393–401

    Article  CAS  PubMed  Google Scholar 

  • Osuna M, Sonobe Y, Itakura E, Devnath S, Kato T, Kato Y, Inoue K (2012) Differentiation capacity of native pituitary folliculostellate cells and brain astrocytes. J Endocrinol 213:231–237

    Article  CAS  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa N, Kihara H, Yamaguchi S, Yoshimura F (1983) Pituitary folliculo-stellate cells immunostained with S-100 protein antiserum in postnatal, castrated and thyroidectomized rats. Cell Tissue Res 231:235–249

    Article  CAS  PubMed  Google Scholar 

  • Soji T, Yashiro T, Herbert DC (1989) Granulated “marginal cell layer” in the rat anterior pituitary gland. Tissue Cell 21:849–856

    Article  CAS  PubMed  Google Scholar 

  • Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y (2012) Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 24:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Vankelecom H (2012) Pituitary stem cells drop their mask. Curr Stem Cell Res Ther 7:36–71

    Article  CAS  PubMed  Google Scholar 

  • Vankelecom H, Chen J (2013) Pituitary stem cells: where do we stand? Mol Cell Endocrinol 385:2-17

    Article  PubMed  Google Scholar 

  • Vankelecom H, Gremeaux L (2010) Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol 166:478–488

    Article  CAS  PubMed  Google Scholar 

  • Watkins-Chow DE, Camper SA (1998) How many homeobox genes does it take to make a pituitary gland? Trends Genet 14:284–290

    Article  CAS  PubMed  Google Scholar 

  • Yako H, Kato T, Yoshida S, Inoue K, Kato Y (2011) Three-dimensional studies of Prop1-expressing cells in the rat pituitary primordium of Rathke’s pouch. Cell Tissue Res 346:339–346

    Article  CAS  PubMed  Google Scholar 

  • Yako H, Kato T, Yoshida S, Higuchi M, Chen M, Kanno N, Cai L-Y, Hiroki U, Kato Y (2013) Three-dimensional studies of Prop1-expressing cells in the rat pituitary just before birth. Cell Tissue Res 354:837–847

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kato T, Susa T, Cai L-Y, Nakayama M, Kato Y (2009) PROP1 coexists with SOX2 and induces PIT1-commitment cells. Biochem Biophys Res Commun 385:11–15

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kato T, Yako H, Susa T, Cai L-Y, Osuna M, Inoue K, Kato Y (2011) Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol 23:933–943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida S, Kato T, Higuchi M, Yako H, Chen M, Kanno N, Ueharu H, Kato Y (2013) Rapid transition of NESTIN-expressing dividing cells from PROP1-positive to PIT1-positive advances prenatal pituitary development. J Neuroendocrinol 25:779–791

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura F, Soji T, Sato S, Yokoyama M (1977) Development and differentiation of rat pituitary follicular cells under normal and some experimental conditions with special reference to an interpretation of renewal cell system. Endocr J 24:435–449

    Article  CAS  Google Scholar 

  • Zhu X, Rosenfeld MG (2004) Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr Opin Genet Dev 14:567–574

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Kato.

Additional information

Masashi Higuchi and Naoko Kanno contributed equally to this work.

This work was partially supported by JSPS KAKENHI (grant nos. 21380184 to Y.K. and 24580435 to T.K.) and by a research grant (A) to Y.K. from the Institute of Science and Technology, Meiji University. This study was also supported by the Meiji University International Institute for BioResource Research (MUIIR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, M., Kanno, N., Yoshida, S. et al. GFP-expressing S100β-positive cells of the rat anterior pituitary differentiate into hormone-producing cells. Cell Tissue Res 357, 767–779 (2014). https://doi.org/10.1007/s00441-014-1890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1890-0

Keywords

Navigation