Skip to main content

Advertisement

Log in

Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Airaksinen MS, Saarma M (2002) The GDNF family: signaling, biological functions and therapeutic value. Nature Rev Neurosci 3:383–394

    CAS  Google Scholar 

  • Akimoto M, Nishimaki T, Arai Y, Uchinuma E, Yamauchi H, Kameda Y (2010a) Hes1 regulates formations of the hypophyseal pars tuberalis and the hypothalamus. Cell Tissue Res 340:509–521

    PubMed  Google Scholar 

  • Akimoto M, Kameda Y, Arai Y, Miura M, Nishimaki T, Takeda A, Uchinuma E (2010b) Hes1 is required for the development of craniofacial structures derived from ectomesenchymal neural crest cells. J Craniofac Surg 21:1443–1449

    PubMed  Google Scholar 

  • Allmendinger A, Stoeckel E, Saarma M, Unsicker K, Huber K (2003) Development of adrenal chromaffin cells is largely normal in mice lacking the receptor tyrosine kinase c-Ret. Mech Dev 120:299–304

    CAS  PubMed  Google Scholar 

  • Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L et al (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33:459–461

    CAS  PubMed  Google Scholar 

  • Anderson DJ (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16:129–158

    CAS  PubMed  Google Scholar 

  • Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM (2001) Multiple effects of artemin on sympathetic neuron generation, survival and growth. Development 128:3685–3695

    CAS  PubMed  Google Scholar 

  • Arevalo JC, Wu SH (2006) Neurotrophin signaling: many exciting surprises. Cell Mol Life Sci 63:1523–1537

    CAS  PubMed  Google Scholar 

  • Barker PA (2004) p75NTR is positively promiscuous: novel partners and new insights. Neuron 42:529–533

    CAS  PubMed  Google Scholar 

  • Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Böttcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26:63–77

    PubMed  Google Scholar 

  • Britsch S (2007) The neuregulin-1/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65

    PubMed  Google Scholar 

  • Britsch S, Li L, Kirchhoff S, Thedeuring F, Brinkmann V, Birchmeier C, Riethmacher D (1998) The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12:1825–1836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchmann-Moller S, Miescher I, John N, Krishman J, Deng CX, Sommer L (2009) Multiple lineage-specific roles of Smad4 during neural crest development. Dev Biol 330:329–338

    PubMed  Google Scholar 

  • Callahan T, Young HM, Anderson RB, Enomoto H, Anderson CR (2008) Development of satellite glia in mouse sympathetic ganglia: GDNF and GFR alpha1 are not essential. Glia 56:1428–1437

    PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    CAS  PubMed  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev 4:299–309

    CAS  Google Scholar 

  • Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier-Lavigne M (2001) Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 32:249–263

    CAS  PubMed  Google Scholar 

  • Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 292:13–24

    CAS  PubMed  Google Scholar 

  • Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011

    CAS  PubMed  Google Scholar 

  • Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130:6635–6642

    CAS  PubMed  Google Scholar 

  • Dhanoa NK, Krol KM, Jahed A, Crutcher KA, Kawaja MD (2006) Null mutations for exon III and exon IV of the p75 neurotrophin receptor gene enhance sympathetic sprouting in response to elevated levels of nerve growth factor in transgenic mice. Exp Neurol 198:416–426

    CAS  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Varela H, Valladares F, Alvarez-Argüelles H, Borges R (2008) Histogenesis and morphofunctional characteristics of chromaffin cells. Acta Physiol 192:145–163

    CAS  Google Scholar 

  • Dubreuil V, Ramanantsoa N, Trpcjet D, Vaubourg V, Amiel J, Gallego J, Brunet JF, Goridis C (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci USA 105:1067–1072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122:349–358

    CAS  PubMed  Google Scholar 

  • ElShamy WM, Linnarsson S, Lee KF, Jaenisch R, Ernfors P (1996) Prenatal and postnatal requirements of NT-3 for sympathetic neuroblast survival and innervation of specific targets. Development 122:491–500

    CAS  PubMed  Google Scholar 

  • Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM, Milbrandt J (2001) RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 128:3963–3974

    CAS  PubMed  Google Scholar 

  • Erickson JT, Brosenitsch TA, Katz DM (2001) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21:581–589

    CAS  PubMed  Google Scholar 

  • Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150

    CAS  PubMed  Google Scholar 

  • Ernsberger U (2008) The role of GDNF family ligand signaling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 333:353–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernsberger U (2009) Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336:349–384

    CAS  PubMed  Google Scholar 

  • Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, Hempstead BL (2001) The cytoplasmic and transmembrane domains of the p75 and TrkA receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695

    CAS  PubMed  Google Scholar 

  • Fagan AM, Zhang H, Landis S, Smeyne RJ, Silos-Santiago I, Barbacid M (1996) TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci 16:6208–6218

    CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661

    CAS  PubMed  Google Scholar 

  • Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L, Landis S (1999) NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 210:411–427

    CAS  PubMed  Google Scholar 

  • Fujisawa H (2004) Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J Neurobiol 59:24–33

    CAS  PubMed  Google Scholar 

  • Gammill LS, Gonzalez C, Gu C, Bronner-Fraser M (2006) Guidance of trunk neural crest migration requires neuropilin 2/semaphoring 3 F signaling. Development 133:99–106

    CAS  PubMed  Google Scholar 

  • Glebova N, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervations in vivo. J Neurosci 24:743–751

    CAS  PubMed  Google Scholar 

  • Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nature Rev 3:531–541

    CAS  Google Scholar 

  • Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325

    CAS  PubMed  Google Scholar 

  • Gotoh N, Ito M, Yamamoto S, Yoshino I, Song N, Wang Y, Lax I, Schlessinger J, Shibuya M, Lang RA (2004) Tyrosine phosphorylation sites on FRS2α responsible for Shp2 recruitment are critical for induction of lens and retina. Proc Natl Acad Sci USA 101:17144–17149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guillemot F, Lo L-C, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    CAS  PubMed  Google Scholar 

  • Gut P, Huber K, Lohr J, Bruhl B, Oberle S et al (2005) Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development 132:4611–4619

    CAS  PubMed  Google Scholar 

  • Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J (2001) Critical role for the docking-protein FRS2α in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA 98:8578–8583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA (2002) Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Gene Dev 16:2650–2661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris ML, Erickson CA (2007) Lineage specification in neural crest cell pathfinding. Dev Dyn 236:1–19

    CAS  PubMed  Google Scholar 

  • Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ (2008) Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression or development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319:179–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendry IA, Iversen LL (1971) Effect of nerve growth factor and its antiserum on tyrosine hydroxylase activity in mouse superior cervical sympathetic ganglion. Brain Res 29:159–162

    CAS  PubMed  Google Scholar 

  • Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599–608

    CAS  PubMed  Google Scholar 

  • Hong SJ, Lardaro T, Oh MS, Huh Y, Ding Y et al (2008) Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2β. J Biol Chem 283:16860–16867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y et al (2011) Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci 46:245–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth RO, Johnson EM Jr, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282

    CAS  PubMed  Google Scholar 

  • Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277:271–286

    CAS  PubMed  Google Scholar 

  • Howard MJ, Stanke M, Schneider C, Wu X, Rohrer H (2000) The transcription factor dHand is a downstream effector of BMPs in sympathetic neuron specification. Development 127:4073–4081

    CAS  PubMed  Google Scholar 

  • Huber K (2006) The sympathoadrenal cell lineage: Specification, diversification, and new perspectives. Dev Biol 298:335–343

    CAS  PubMed  Google Scholar 

  • Huber K, Ernsberger U (2006) Cholinergic differentiation occurs early in mouse sympathetic neurons and requires Phox2b. Gene Expr 13:133–139

    CAS  PubMed  Google Scholar 

  • Huber K, Brühl B, Guillemot F, Olson EN, Ernsberger U, Unsicker K (2002) Development of chromaffin cells depends on Mash1 function. Development 129:4729–4738

    CAS  PubMed  Google Scholar 

  • Huber K, Karch N, Ernsberger U, Goridis C, Unsicker K (2005) The role of Phox2B in chromaffin cell development. Dev Biol 279:501–508

    CAS  PubMed  Google Scholar 

  • Huber K, Narasimhan P, Shtukmaster S, Pfeifer D, Evans SM, Sun Y (2013) The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol 380:286–298

    CAS  PubMed  Google Scholar 

  • Ichikawa H (2002) Innervation of the carotid body: immunohistochemical, denervation, and retrograde tracing studies. Microsc Res Techn 59:188–195

    CAS  Google Scholar 

  • Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9:3136–3148

    CAS  PubMed  Google Scholar 

  • Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  • Johnson JE, Birren SJ, Anderson DJ (1990) Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 346:858–861

    CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9:179–188

    CAS  PubMed  Google Scholar 

  • Kameda Y (1994) Electron microscopic study on the development of the carotid body and glomus cell groups distributed in the wall of the common carotid artery and its branches in the chicken. J Comp Neurol 348:544–555

    CAS  PubMed  Google Scholar 

  • Kameda Y (1996) Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla from guinea pigs. J Histochem Cytochem 44:1439–1449

    CAS  PubMed  Google Scholar 

  • Kameda Y (2005) Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283:128–139

    CAS  PubMed  Google Scholar 

  • Kameda Y (2009) Hoxa3 and signaling molecules involved in aortic arch patterning and remodeling. Cell Tissue Res 336:165–178

    CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Takeichi MO, Chisaka O (2002) Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247:197–209

    CAS  PubMed  Google Scholar 

  • Kameda Y, Watari-Goshima N, Nishimaki T, Chisaka O (2003) Disruption of the Hoxa3 homeobox gene results in anomalies of the carotid artery system and the arterial baroreceptors. Cell Tissue Res 311:343–352

    PubMed  Google Scholar 

  • Kameda Y, Ito M, Nishimaki T, Gotoh N (2008) FRS2α 2F/2F mice lack carotid body and exhibit abnormalities of the superior cervical sympathetic ganglion and carotid sinus nerve. Dev Biol 314:236–247

    CAS  PubMed  Google Scholar 

  • Kameda Y, Saitoh T, Fujimura T (2011) Hes1 regulates the number and anterior-posterior patterning of mesencephalic dopaminergic neurons at the mid/hindbrain boundary (isthmus). Dev Biol 358:91–101

    CAS  PubMed  Google Scholar 

  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S (2012) Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 241:1289–1300

    CAS  PubMed  Google Scholar 

  • Kasemeier-Kulesa J, McLennan R, Romine MH, Kulesa PM, Lefcort F (2010) CXCR4 controls ventral migration of sympathetic precursor cells. J Neurosci 30:13078–13088

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Bekku Y, Suto F, Kitsukawa T, Taniguchi M, Nagatsu I, Nagatsu T, Itoh K, Yagi T, Fujisawa H (2002) Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system. Development 129:671–680

    CAS  PubMed  Google Scholar 

  • Klimaschewski L, Meisinger C, Grothe C (1999) Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF Receptor-1 in rat superior cervical ganglion after axotomy. J Neurobiol 38:499–506

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Deimling F, Suter-Crazzolara C, Unsicker K (1996) Expression and localization of GDNF in developing and adult adrenal chromaffin cells. Cell Tissue Res 286:263–268

    CAS  PubMed  Google Scholar 

  • Krispin S, Nitzan E, Kassem Y, Kalcheim C (2010) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137:585–595

    CAS  PubMed  Google Scholar 

  • Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255

    CAS  PubMed  Google Scholar 

  • Labosky PA, Kaestner KH (1998) The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech Dev 76:185–190

    CAS  PubMed  Google Scholar 

  • Lan MS, Breslin MB (2009) Structure, expression, and biological function of INSM1 transcription factor in neuroendocrine differentiation. FASEB J 23:2024–2033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206

    CAS  PubMed  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749

    CAS  PubMed  Google Scholar 

  • Lee KF, Backman K, Landis S, Jaenisch R (1994) Dependence on p75 for innervation of some sympathetic targets. Science 263:1447–1449

    CAS  PubMed  Google Scholar 

  • Leitner ML, Wang LH, Osborne PA, Golden JP, Milbrandt J, Johnson EM Jr (2005) Expression and function of GDNF family ligands and receptors in the carotid body. Exp Neurol 191:S68–S79

    CAS  PubMed  Google Scholar 

  • Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet 25:209–212

    CAS  PubMed  Google Scholar 

  • Lo L, Tiveron MC, Anderson DJ (1998) MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125:609–620

    CAS  PubMed  Google Scholar 

  • Ma Y, Campenot RB, Miller FD (1992) Concentration-dependent regulation of neuronal gene expression by nerve growth factor. J Cell Biol 117:135–141

    CAS  PubMed  Google Scholar 

  • Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C (2012) NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 369:277–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim APS, Mahata M et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maina F, Hilton MC, Andres R, Wyatt S, Klein R, Davies AM (1998) Multiple roles for hepatocyte growth factor in sympathetic neuron development. Neuron 20:835–846

    CAS  PubMed  Google Scholar 

  • Masliukov PM, Timmermans JP (2004) Immunocytochemical properties of stellate ganglion neurons during early postnatal development. Histochem Cell Biol 122:201–209

    CAS  PubMed  Google Scholar 

  • Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    CAS  PubMed  Google Scholar 

  • McDonald DM (1977) Structure-function relationships of chemoreceptive nerves in the carotid body. Annu Rev Respir Dis 115:193–207

    CAS  Google Scholar 

  • Middleton G, Davies AM (2001) Populations of NGF-dependent neurons differ in their requirement for BAX to undergo apoptosis in the absence of NGF/TrkA signalling in vivo. Development 128:4715–4728

    CAS  PubMed  Google Scholar 

  • Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Philips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    CAS  PubMed  Google Scholar 

  • Moriguchi T, Nakano T, Hamada M, Maeda A, Fujioka Y et al (2006) Gata3 participates in a complex transcriptional feedback network to regulates sympathoadrenal differentiation. Development 133:3871–3881

    CAS  PubMed  Google Scholar 

  • Morikawa Y, Dai YS, Hao J, Bonin C, Hwang S, Cserjesi P (2005) The basic helix-loop-helix factor Hand2 regulates autonomic nervous system development. Dev Dyn 234:613–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morikawa Y, D’Autreaux F, Gershon MD, Cserjesi P (2007) Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307:114–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morikawa Y, Zehir A, Maska E, Deng C, Schneider MD, Mishina Y, Cserjesi P (2009) BMP signaling regulates sympathetic nervous system development through Smad4-dependent and –independent pathways. Development 136:3575–3584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18:411–423

    CAS  PubMed  Google Scholar 

  • Mundell NA, Labosky PA (2011) Neural crest stem cell multipotency requires Foxd3 to maintain neuronal potential and repress mesenchymal fates. Development 138:641–652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet JF, Amiel J, Trochet D, Wakayama T, Enomoto H (2012) Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J Clin Invest 122:3145–3158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nindl W, Kavakebi P, Claus P, Grothe C, Pfaller K, Klimaschewski L (2004) Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience 124:561–572

    CAS  PubMed  Google Scholar 

  • Nishi K, Stensaas LJ (1974) The ultrastructure and source of nerve endings in the carotid body. Cell Tissue Res 154:303–319

    CAS  PubMed  Google Scholar 

  • Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S, Matsuda Y, Fujii H, Saijoh Y, Hamada H (1999) GFRα3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron 23:725–736

    CAS  PubMed  Google Scholar 

  • Oomori Y, Nakaya K, Tanaka H, Inchi H, Ishikawa K et al (1994) Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma-aminobutyric acid in chief cells of the mouse carotid body. Cell Tissue Res 278:249–254

    CAS  PubMed  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    CAS  PubMed  Google Scholar 

  • Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065–4075

    CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    CAS  PubMed  Google Scholar 

  • Pattyn A, Guillemot F, Brunet JF (2000) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15:235–243

    CAS  PubMed  Google Scholar 

  • Pattyn A, Guillemot F, Brunet JF (2006) Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 295:67–75

    CAS  PubMed  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B 361:1545–1564

    CAS  Google Scholar 

  • Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–2088

    CAS  PubMed  Google Scholar 

  • Reuss B, von Bohlen-Halbach O (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313:139–157

    CAS  PubMed  Google Scholar 

  • Rohrer H (2011) Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 34:1563–1573

    PubMed  Google Scholar 

  • Romeo G, Ronchetto P, Luo Y, Barone V, Seri M et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378

    CAS  PubMed  Google Scholar 

  • Roosen A, Schober A, Strelau J, Bottner M, Faulhaber J et al (2001) Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation. J Neurosci 21:3073–3084

    CAS  PubMed  Google Scholar 

  • Rubin E (1985) Development of the rat superior cervical ganglion: ganglion cell maturation. J Neurosci 5:673–684

    CAS  PubMed  Google Scholar 

  • Ruhrberg C, Schwarz Q (2010) In the beginning Generating neural crest cell diversity. Cell Adh Migr 4:622–630

    PubMed Central  PubMed  Google Scholar 

  • Saito D, Takase Y, Murai H, Takahashi Y (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336:1578–1581

    CAS  PubMed  Google Scholar 

  • Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862

    CAS  PubMed  Google Scholar 

  • Schmidt M, Huber L, Majdaazari A, Scutz G, Williams T, Rohrer H (2011) The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 35:89–100

    Google Scholar 

  • Schmierer B, Hill CS (2007) TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nature Rev 8:970–982

    CAS  Google Scholar 

  • Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H (1999) Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24:861–870

    CAS  PubMed  Google Scholar 

  • Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    CAS  PubMed  Google Scholar 

  • Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci USA 106:6164–6169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi H, Cui H, Alam G, Gunning WT, Nestor A, Glovannucci D, Zhang M, Ding HF (2008) Nestin expression defines both glial and neuronal progenitors in postnatal sympathetic ganglia. J Comp Neurol 508:867–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K (2013) Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8:12(1–7)

  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249

    CAS  PubMed  Google Scholar 

  • Sommer L, Shah N, Rao M, Anderson DJ (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15:1245–1258

    CAS  PubMed  Google Scholar 

  • Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK (1996) Nuclear accumulation of fibroblast growth factor receptors is regulated by multiple signals in adrenal medullary cells. Mol Biol Cell 7:1299–1317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Dykes IM, Liang X, Eng SR, Evans SM, Turner EE (2008) A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nature Neurosci 11:1283–1293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suto F, Ito K, Uemura M, Shimizu M, Shinkawa Y et al (2005) Plexin-A4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci 25:3628–3637

    CAS  PubMed  Google Scholar 

  • Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA (2008) Requirement for Foxd3 in the maintenance of neural crest progenitors. Development 135:1615–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tessarollo L, Tsoulfas P, Donovan MJ, Palko ME, Blair-Flynn J, Hempstead BL, Parada L (1997) Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proc Natl Acad Sci USA 94:14776–14781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thoenen H, Angeletti PU, Levi-Montalcini R, Kettler R (1971) Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine-β-hydroxylase in rat superior cervical ganglia. Proc Natl Acad Sci USA 68:1598–1602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toledo-Aral JJ, Mendez-Ferrer S, Pardal R, Echevarria M, Lopez-Barneo J (2003) Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J Neurosci 23:141–148

    CAS  PubMed  Google Scholar 

  • Torii M, Matsuzaki F, Osumi N, Kaibuchi K, Nakamura S, Casarosa S, Guillemot F, Nakafuku M (1999) Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126:443–456

    CAS  PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nature Rev Neurosci 1:116–124

    CAS  Google Scholar 

  • Trochet D, Hong SJ, Lim JK, Brunet JF, Munnich A, Kim KS, Lyonnet S, Goridis C, Amiel J (2005) Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction. Human Mol Genet 14:3697–3708

    CAS  Google Scholar 

  • Tsarovina K, Pattyn A, Stubbusch J, Müller F, van der Wees J, Schneider C, Brunet JF, Rohrer H (2004) Essential role of Gata transcription factors in sympathetic neuron development. Development 131:4775–4786

    CAS  PubMed  Google Scholar 

  • Tsarovina K, Reiff T, Stubbusch J, Kurek D, Grosveld FG, Parlato R, Schütz G, Rohrer H (2010) The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 30:10833–10843

    CAS  PubMed  Google Scholar 

  • Unsicker K, Huber K, Schutz G, Kalcheim C (2005) The chromaffin cell and its development. Neurochem Res 30:921–925

    CAS  PubMed  Google Scholar 

  • Verna A (1979) Ultrastructure of the carotid body in the mammals. Int Rev Cytol 60:271–330

    CAS  PubMed  Google Scholar 

  • Villadiego J, Mendez-Ferrer S, Valdes-Sanchez T, Silos-Santiago I, Farinas I, Lopez-Barneo J, Toledo-Aral JJ (2005) Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 25:4091–4098

    CAS  PubMed  Google Scholar 

  • Waimey KE, Huang PH, Chen M, Cheng HJ (2008) Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors. Dev Biol 315:448–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wildner H, Gierl MS, Strehle M, Pla P, Birchmeier C (2008) Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 135:473–481

    CAS  PubMed  Google Scholar 

  • Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M (2004) Neural crest cell lineage segregation in the mouse neural tube. Development 131:6153–6162

    CAS  PubMed  Google Scholar 

  • Wyatt S, Pinon LG, Emfors P, Davies AM (1997) Sympathetic neuron survival and TrkA expression in NT3-deficient mouse embryos. EMBO J 16:3115–3123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Yoshino I, Shimazaki T, Murohashi M, Hevner RF et al (2005) Essential role of Shp2-binding sites on FRS2α for corticogenesis and for FGF2-dependent proliferation of neural progenitor cells. Proc Natl Acad Sci USA 102:15983–15988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XM, Toma JG, Bamji SX, Belliveau DJ, Kohn J, Park M, Miller FD (1998) Autocrine hepatocyte growth factor provides a local mechanism for promoting axonal growth. J Neurosci 18:8369–8381

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Kameda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameda, Y. Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357, 527–548 (2014). https://doi.org/10.1007/s00441-014-1847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1847-3

Keywords

Navigation