Skip to main content

Advertisement

Log in

Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The substance P neurokinin 1 receptor (NK1R) regulates motility, secretion, inflammation and pain in the intestine. The distribution of the NK1R is a key determinant of the functional effects of substance P in the gut. Information regarding the distribution of NK1R in subtypes of mouse enteric neurons is lacking and is the focus of the present study. NK1R immunoreactivity (NK1R-IR) is examined in whole-mount preparations of the mouse distal colon by indirect immunofluorescence and confocal microscopy. The distribution of NK1R-IR within key functional neuronal subclasses was determined by using established neurochemical markers. NK1R-IR was expressed by a subpopulation of myenteric and submucosal neurons; it was mainly detected in large multipolar myenteric neurons and was colocalized with calcitonin gene-related peptide, neurofilament M, choline acetyltransferase and calretinin. The remaining NK1R-immunoreactive neurons were positive for nitric oxide synthase. NK1R was expressed by most of the submucosal neurons and was exclusively co-expressed with vasoactive intestinal peptide, with no overlap with choline acetyltransferase. Treatment with substance P resulted in the concentration-dependent internalisation of NK1R from the cell surface into endosome-like structures. Myenteric NK1R was mainly expressed by intrinsic primary afferent neurons, with minor expression by descending interneurons and inhibitory motor neurons. Submucosal NK1R was restricted to non-cholinergic secretomotor neurons. These findings highlight key differences in the neuronal distribution of NK1R-IR between the mouse, rat and guinea-pig, with important implications for the functional role of NK1R in regulating intestinal motility and secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Saffar A, Hellstrom PM (2001) Contractile responses to natural tachykinins and selective tachykinin analogs in normal and inflamed ileal and colonic muscle. Scand J Gastroenterol 36:485–493

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP, Galligan JJ (1994) Contribution of chloride conductance increase to slow EPSC and tachykinin current in guinea-pig myenteric neurones. J Physiol (Lond) 481:47–60

    CAS  PubMed Central  Google Scholar 

  • Bian XC, Bertrand PP, Furness JB, Bornstein JC (2000) Evidence for functional NK1-tachykinin receptors on motor neurones supplying the circular muscle of guinea-pig small and large intestine. Neurogastroenterol Motil 12:307–315

    Article  CAS  PubMed  Google Scholar 

  • Bornstein JC, Furness JB, Costa M (1989) An electrophysiological comparison of substance P-immunoreactive neurons with other neurons in the guinea-pig submucous plexus. J Auton Nerv Syst 26:113–120

    Article  CAS  PubMed  Google Scholar 

  • Boutaghou-Cherid H, Porcher C, Liberge M, Jule Y, Bunnett NW, Christen MO (2006) Expression of the neurokinin type 1 receptor in the human colon. Auton Neurosci Basic Clin 124:9–17

    Article  CAS  Google Scholar 

  • Bowden JJ, Garland AM, Baluk P, Lefevre P, Grady EF, Vigna SR, Bunnett NW, McDonald DM (1994) Direct observation of substance P-induced internalization of neurokinin 1 (NK1) receptors at sites of inflammation. Proc Natl Acad Sci U S A 91:8964–8968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brierley SM, Nichols K, Grasby DJ, Waterman SA (2001) Neural mechanisms underlying migrating motor complex formation in mouse isolated colon. Br J Pharmacol 132:507–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunnett NW, Dazin PF, Payan DG, Grady EF (1995) Characterization of receptors using cyanine 3-labeled neuropeptides. Peptides 16:733–740

    Article  CAS  PubMed  Google Scholar 

  • Castagliuolo I, Morteau O, Keates AC, Valenick L, Wang CC, Zacks J, Lu B, Gerard NP, Pothoulakis C (2002) Protective effects of neurokinin-1 receptor during colitis in mice: role of the epidermal growth factor receptor. Br J Pharmacol 136:271–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cattaruzza F, Poole DP, Bunnett NW (2013) Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem Soc Trans 41:137–143

    Article  CAS  PubMed  Google Scholar 

  • Cellek S, John AK, Thangiah R, Dass NB, Bassil AK, Jarvie EM, Lalude O, Vivekanandan S, Sanger GJ (2006) 5-HT4 receptor agonists enhance both cholinergic and nitrergic activities in human isolated colon circular muscle. Neurogastroenterol Motil 18:853–861

    Article  CAS  PubMed  Google Scholar 

  • Chalazonitis A, Tang AA, Shang Y, Pham TD, Hsieh I, Setlik W, Gershon MD, Huang EJ (2011) Homeodomain interacting protein kinase 2 regulates postnatal development of enteric dopaminergic neurons and glia via BMP signaling. J Neurosci 31:13746–13757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooke HJ, Sidhu M, Fox P, Wang YZ, Zimmermann EM (1997) Substance P as a mediator of colonic secretory reflexes. Am J Physiol 272:G238–G245

    CAS  PubMed  Google Scholar 

  • Copel C, Osorio N, Crest M, Gola M, Delmas P, Clerc N (2009) Activation of neurokinin 3 receptor increases Na(v)1.9 current in enteric neurons. J Physiol (Lond) 587:1461–1479

    Article  CAS  Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Cuello AC (1981) Projections of substance P-containing neurons within the guinea-pig small intestine. Neuroscience 6:411–424

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75:949–967

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC, Galfre G, Milstein C (1979) Detection of substance P in the central nervous system by a monoclonal antibody. Proc Natl Acad Sci U S A 76:3532–3536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Jonge F, Van Nassauw L, De Man JG, De Winter BY, Van Meir F, Depoortere I, Peeters TL, Pelckmans PA, Van Marck E, Timmermans JP (2003) Effects of Schistosoma mansoni infection on somatostatin and somatostatin receptor 2A expression in mouse ileum. Neurogastroenterol Motil 15:149–159

    Article  PubMed  Google Scholar 

  • Ekblad E, Ekman R, Hakanson R, Sundler F (1988) Projections of peptide-containing neurons in rat colon. Neuroscience 27:655–674

    Article  CAS  PubMed  Google Scholar 

  • Engel MA, Khalil M, Mueller-Tribbensee SM, Becker C, Neuhuber WL, Neurath MF, Reeh PW (2012) The proximodistal aggravation of colitis depends on substance P released from TRPV1-expressing sensory neurons. J Gastroenterol 47:256–265

    Article  CAS  PubMed  Google Scholar 

  • Foxx-Orenstein AE, Grider JR (1996) Regulation of colonic propulsion by enteric excitatory and inhibitory neurotransmitters. Am J Physiol 271:G433–G437

    CAS  PubMed  Google Scholar 

  • Frieling T, Dobreva G, Weber E, Becker K, Rupprecht C, Neunlist M, Schemann M (1999) Different tachykinin receptors mediate chloride secretion in the distal colon through activation of submucosal neurones. Naunyn-Schmiedeberg’s Arch Pharmacol 359:71–79

    Article  CAS  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Jones C, Nurgali K, Clerc N (2004a) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Robbins HL, Xiao J, Stebbing MJ, Nurgali K (2004b) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    Article  CAS  PubMed  Google Scholar 

  • Gad M, Pedersen AE, Kristensen NN, Fernandez Cde F, Claesson MH (2009) Blockage of the neurokinin 1 receptor and capsaicin-induced ablation of the enteric afferent nerves protect SCID mice against T-cell-induced chronic colitis. Inflamm Bowel Dis 15:1174–1182

    Article  PubMed  Google Scholar 

  • Galligan JJ, Costa M, Furness JB (1988) Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res 253:647–656

    Article  CAS  PubMed  Google Scholar 

  • Goode T, O’Connell J, Anton P, Wong H, Reeve J, O’Sullivan GC, Collins JK, Shanahan F (2000) Neurokinin-1 receptor expression in inflammatory bowel disease: molecular quantitation and localisation. Gut 47:387–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grady EF, Gamp PD, Jones E, Baluk P, McDonald DM, Payan DG, Bunnett NW (1996) Endocytosis and recycling of neurokinin 1 receptors in enteric neurons. Neuroscience 75:1239–1254

    Article  CAS  PubMed  Google Scholar 

  • Grider JR (1994) CGRP as a transmitter in the sensory pathway mediating peristaltic reflex. Am J Physiol 266:G1139–G1145

    CAS  PubMed  Google Scholar 

  • Grider JR (2003) Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther 307:460–467

    Article  CAS  PubMed  Google Scholar 

  • Guagnini F, Valenti M, Mukenge S, Matias I, Bianchetti A, Di Palo S, Ferla G, Di Marzo V, Croci T (2006) Neural contractions in colonic strips from patients with diverticular disease: role of endocannabinoids and substance P. Gut 55:946–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gwynne RM, Ellis M, Sjovall H, Bornstein JC (2009) Cholera toxin induces sustained hyperexcitability in submucosal secretomotor neurons in guinea pig jejunum. Gastroenterology 136:e294

    Article  Google Scholar 

  • Harrington AM, Hutson JM, Southwell BR (2005) Immunohistochemical localization of substance P NK1 receptor in guinea pig distal colon. Neurogastroenterol Motil 17:727–737

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997a) Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 73:173–217

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997b) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Holzer-Petsche U (2001) Tachykinin receptors in the gut: physiological and pathological implications. Curr Opin Pharmacol 1:583–590

    Article  CAS  PubMed  Google Scholar 

  • Hosseini JM, Goldhill JM, Bossone C, Pineiro-Carrero V, Shea-Donohue T (1999) Progressive alterations in circular smooth muscle contractility in TNBS-induced colitis in rats. Neurogastroenterol Motil 11:347–356

    Article  CAS  PubMed  Google Scholar 

  • Iino S, Ward SM, Sanders KM (2004) Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J Physiol (Lond) 556:521–530

    Article  CAS  Google Scholar 

  • Jenkinson KM, Morgan JM, Furness JB, Southwell BR (1999) Neurons bearing NK(3) tachykinin receptors in the guinea-pig ileum revealed by specific binding of fluorescently labelled agonists. Histochem Cell Biol 112:233–246

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Polak JM, Van Noorden S, Bloom SR, Burnstock G (1980) Peptide-containing neurones connect the two ganglionated plexuses of the enteric nervous system. Nature 283:391–393

    Article  CAS  PubMed  Google Scholar 

  • Kimball ES, Prouty SP, Pavlick KP, Wallace NH, Schneider CR, Hornby PJ (2007) Stimulation of neuronal receptors, neuropeptides and cytokines during experimental oil of mustard colitis. Neurogastroenterol Motil 19:390–400

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner AL, Tamir H, Gershon MD (1992) Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci 12:235–248

    CAS  PubMed  Google Scholar 

  • Koon HW, Pothoulakis C (2006) Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci 1088:23–40

    Article  CAS  PubMed  Google Scholar 

  • Landau AM, Yashpal K, Cahill CM, St Louis M, Ribeiro-da-Silva A, Henry JL (2007) Sensory neuron and substance P involvement in symptoms of a zymosan-induced rat model of acute bowel inflammation. Neuroscience 145:699–707

    Article  CAS  PubMed  Google Scholar 

  • Lecci A, Tramontana M, Giuliani S, Maggi CA (1997) Role of tachykinin NK1 and NK2 receptors on colonic motility in anesthetized rats: effect of agonists. Can J Physiol Pharmacol 75:582–586

    Article  CAS  PubMed  Google Scholar 

  • Lecci A, Capriati A, Altamura M, Maggi CA (2006) Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton Neurosci Basic Clin 126–127:232–249

    Article  Google Scholar 

  • Lomax AE, Bertrand PP, Furness JB (1998) Identification of the populations of enteric neurons that have NK1 tachykinin receptors in the guinea-pig small intestine. Cell Tissue Res 294:27–33

    Article  CAS  PubMed  Google Scholar 

  • MacNaughton W, Moore B, Vanner S (1997) Cellular pathways mediating tachykinin-evoked secretomotor responses in guinea pig ileum. Am J Physiol 273:G1127–G1134

    CAS  PubMed  Google Scholar 

  • Mann PT, Southwell BR, Ding YQ, Shigemoto R, Mizuno N, Furness JB (1997) Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell Tissue Res 289:1–9

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Furness JB, Southwell BR (1999a) Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell Tissue Res 297:241–248

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Southwell BR, Furness JB (1999b) Internalization of the neurokinin 1 receptor in rat myenteric neurons. Neuroscience 91:353–362

    Article  CAS  PubMed  Google Scholar 

  • Mantyh CR, Pappas TN, Lapp JA, Washington MK, Neville LM, Ghilardi JR, Rogers SD, Mantyh PW, Vigna SR (1996) Substance P activation of enteric neurons in response to intraluminal Clostridium difficile toxin A in the rat ileum. Gastroenterology 111:1272–1280

    Article  CAS  PubMed  Google Scholar 

  • Marvizon JC, Martinez V, Grady EF, Bunnett NW, Mayer EA (1997) Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J Neurosci 17:8129–8136

    CAS  PubMed  Google Scholar 

  • Mitsui R (2010) Immunohistochemical characteristics of submucosal Dogiel type II neurons in rat colon. Cell Tissue Res 340:257–265

    Article  CAS  PubMed  Google Scholar 

  • Mitsui R (2011) Immunohistochemical analysis of substance P-containing neurons in rat small intestine. Cell Tissue Res 343:331–341

    Article  CAS  PubMed  Google Scholar 

  • Mongardi Fantaguzzi C, Thacker M, Chiocchetti R, Furness JB (2009) Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res 336:179–189

    Article  CAS  PubMed  Google Scholar 

  • Moore BA, Vanner S, Bunnett NW, Sharkey KA (1997) Characterization of neurokinin-1 receptors in the submucosal plexus of guinea pig ileum. Am J Physiol 273:G670–G678

    CAS  PubMed  Google Scholar 

  • Mule F, Amato A, Serio R (2007) Role for NK(1) and NK(2) receptors in the motor activity in mouse colon. Eur J Pharmacol 570:196–202

    Article  CAS  PubMed  Google Scholar 

  • Nieuwmeyer F, Ye J, Huizinga JD (2006) Ava[L-Pro9, N-MeLeu10] substance P(7–11) (GR 73632) and Sar9, Met(O2)11 increase distention-induced peristalsis through activation of neurokinin-1 receptors on smooth muscle and interstitial cells of cajal. J Pharmacol Exp Ther 317:439–445

    Article  CAS  PubMed  Google Scholar 

  • Pelayo JC, Poole DP, Steinhoff M, Cottrell GS, Bunnett NW (2011) Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. J Physiol (Lond) 589:5213–5230

    CAS  Google Scholar 

  • Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW (2011) Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 141:e981–e988

    Google Scholar 

  • Portbury AL, Furness JB, Young HM, Southwell BR, Vigna SR (1996) Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. J Comp Neurol 367:342–351

    Article  CAS  PubMed  Google Scholar 

  • Porter AJ, Wattchow DA, Brookes SJ, Costa M (1999) Projections of nitric oxide synthase and vasoactive intestinal polypeptide-reactive submucosal neurons in the human colon. J Gastroenterol Hepatol 14:1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161

    Article  CAS  PubMed  Google Scholar 

  • Riegler M, Castagliuolo I, So PT, Lotz M, Wang C, Wlk M, Sogukoglu T, Cosentini E, Bischof G, Hamilton G, Teleky B, Wenzl E, Matthews JB, Pothoulakis C (1999) Effects of substance P on human colonic mucosa in vitro. Am J Physiol 276:G1473–G1483

    CAS  PubMed  Google Scholar 

  • Sang Q, Young HM (1996) Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. Cell Tissue Res 284:39–53

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Williamson S, Young HM (1997) Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J Anat 190:209–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AS, Smid SD (2005) Impaired capsaicin and neurokinin-evoked colonic motility in inflammatory bowel disease. J Gastroenterol Hepatol 20:697–704

    Article  CAS  PubMed  Google Scholar 

  • Smith VC, Sagot MA, Couraud JY, Buchan AM (1998) Localization of the neurokinin 1 (NK-1) receptor in the human antrum and duodenum. Neurosci Lett 253:49–52

    Article  CAS  PubMed  Google Scholar 

  • Smith VC, Sagot MA, Wong H, Buchan AM (2000) Cellular expression of the neurokinin 1 receptor in the human antrum. J Auton Nerv Syst 79:165–172

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff M, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to the physiological control and the mechanisms of disease. Physiol Rev 94:265–301

    Article  CAS  PubMed  Google Scholar 

  • Turvill JL, Connor P, Farthing MJ (2000) Neurokinin 1 and 2 receptors mediate cholera toxin secretion in rat jejunum. Gastroenterology 119:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Vannucchi MG, Faussone-Pellegrini MS (2000) NK1, NK2 and NK3 tachykinin receptor localization and tachykinin distribution in the ileum of the mouse. Anat Embryol 202:247–255

    Article  CAS  PubMed  Google Scholar 

  • Wong V, Blennerhassett M, Vanner S (2008) Electrophysiological and morphological properties of submucosal neurons in the mouse distal colon. Neurogastroenterol Motil 20:725–734

    Article  CAS  PubMed  Google Scholar 

  • Zagorodnyuk V, Santicioli P, Turini D, Maggi CA (1997) Tachykinin NK1 and NK2 receptors mediate non-adrenergic non-cholinergic excitatory neuromuscular transmission in the human ileum. Neuropeptides 31:265–271

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cang CL, Kawasaki Y, Liang LL, Zhang YQ, Ji RR, Zhao ZQ (2007) Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. J Neurosci 27:12067–12077

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Canals M, Murphy JE, Klingler D, Eriksson EM, Pelayo JC, Hardt M, Bunnett NW, Poole DP (2013) Agonist-biased trafficking of somatostatin receptor 2A in enteric neurons. J Biol Chem 288:25689–25700

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Professors J.B. Furness and G.W. Aponte for providing antibodies used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nigel W. Bunnett or Daniel P. Poole.

Additional information

This work was supported by NIH/NIDDK grants DK07573 (J.-C.P.), DK39957, DK43207 and DK57840 (N.W.B.), NHMRC grants 63303, 103188 (N.W.B.) and 454858 (D.P.P.) and Monash University (N.W.B.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelayo, JC., Veldhuis, N.A., Eriksson, E.M. et al. Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell Tissue Res 356, 319–332 (2014). https://doi.org/10.1007/s00441-014-1822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1822-z

Keywords

Navigation