Skip to main content
Log in

Three-point correlation functions in the \(\mathfrak {sl}_3\) Toda theory I: reflection coefficients

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Toda conformal field theories (CFTs) form a family of 2d CFTs indexed by semisimple and complex Lie algebras. They are natural generalizations of the Liouville CFT in that they enjoy an enhanced level of symmetry encoded by W-algebras. These theories can be rigorously defined using a probabilistic framework that involves the consideration of correlated Gaussian Multiplicative Chaos measures. This document provides a first step towards the computation of a class of three-point correlation functions, that generalize the celebrated DOZZ formula and whose expressions were predicted in the physics literature by Fateev–Litvinov, within the probabilistic framework associated to the \(\mathfrak {sl}_3\) Toda CFT. Namely this first article of a two-parts series is dedicated to the probabilistic derivation of the reflection coefficients of general Toda CFTs, which are essential building blocks in the understanding of Toda correlation functions. Along the computations of these reflection coefficients a new path decomposition for diffusion processes in Euclidean spaces, based on a suitable notion of minimum and that generalizes the celebrated one-dimensional result of Williams, will be unveiled. As a byproduct we describe the joint tail expansion of correlated Gaussian Multiplicative Chaos measures together with an asymptotic expansion of class one Whitakker functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed.

Notes

  1. Reflection groups will be implicitly taken finite in what follows.

  2. Different choices of simple roots are of course possible, but will be related by conjugation under W: for any two simple systems there is a \(s\in W\) such that \(s e_i=e'_i\) (up to reordering the roots). Such a simple system always exists [42, Section 1.3] and \(r=\dim {{\textbf {V}}} \).

  3. To define the process this hypothesis may be relaxed by taking h excessive, by which is meant that for any x in \({{\textbf {V}}} \) and all time t, \(\mathbb {E}_x\left[ h({{\textbf {X}}} _t)\right] \;\leqslant \;h(x)\) with \(\lim \limits _{t\rightarrow 0}\mathbb {E}_x\left[ h({{\textbf {X}}} _t)\right] = h(x)\).

  4. We omit the dependence in \({{\textbf {M}}} \) for such a process in order to keep the notations concise.

  5. The assumption that \(\gamma <\sqrt{2}\) is the optimal one to ensure that all the GMC measures for \(1\;\leqslant \;i\;\leqslant \;r\) are well-defined (at least in the subcritical regime). The fact that we need to assume that \(\gamma <\sqrt{2}\) instead of the usual bound \(\gamma <2\) stems from the fact that the longest roots have squared norm 2. To recover the usual range of values one would need to rescale \(\gamma \) by a multiplicative factor \(\sqrt{2}\) to take into account the fact that some roots are not normalized.

References

  1. Aebly, J.: Démonstration du problème du scrutin par des considérations géométriques. Enseign. Math. (2) 23, 185–186 (1923)

    Google Scholar 

  2. Ahn, C., Baseilhac, P., Fateev, V.A., Kim, C., Rim, C.: Reflection amplitudes in non-simply laced Toda theories and thermodynamic Bethe ansatz. Phys. Lett. B 481(1), 114–124 (2000)

    MathSciNet  Google Scholar 

  3. Ahn, C., Fateev, V.A., Kim, C., Rim, C., Yang, B.: Reflection amplitudes of ADE Toda theories and thermodynamic Bethe ansatz. Nucl. Phys. B 565, 611–628 (2000)

    MathSciNet  Google Scholar 

  4. André, D.: Solution directe du problème résolu par M. Bertrand. Comptes rendus de l’Académie des Sciences 105, 436–437 (1887)

    Google Scholar 

  5. Ang, M., Sun, X.: Integrability of the conformal loop ensemble. Preprint, arXiv:2107.01788 (2021)

  6. Baudoin, F., O’Connell, N.: Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. H. Poincaré Probab. Statist. 47(4), 1096–1120 (2011)

    MathSciNet  Google Scholar 

  7. Baverez, G., Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: The Virasoro structure and the scattering matrix for Liouville conformal field theory. Preprint, arXiv:2204.02745 (2022)

  8. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    MathSciNet  Google Scholar 

  9. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22, 1–12 (2017)

    MathSciNet  Google Scholar 

  10. Bertoin, J.: Sur la décomposition de la trajectoire d’un processus de Lévy spectralement positif en son infimum. Annales de l’I.H.P. Probabilités et statistiques 27(4), 537–547 (1991)

    MathSciNet  Google Scholar 

  11. Biane, P., Bougerol, P., O’Connell, N.: Littelmann paths and Brownian paths. Duke Math. J. 130(1), 127–167 (2005)

    MathSciNet  Google Scholar 

  12. Biane, P.: Quelques proprietes du mouvement Brownien dans un cone. Stochastic Process. Appl. 53(2), 233–240 (1994)

    MathSciNet  Google Scholar 

  13. Biane, P., Bougerol, P., O’Connell, N.: Continuous crystal and Duistermaat-Heckman measure for Coxeter groups. Adv. Math. 221(5), 1522–1583 (2009)

    MathSciNet  Google Scholar 

  14. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)

    MathSciNet  Google Scholar 

  15. Borodin, A., Corwin, I., Ferrari, P., Vetó, B.: Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18(20), 1–95 (2015)

    MathSciNet  Google Scholar 

  16. Bruss, F., Yor, M.: A new proof of Williams’ decomposition of the Bessel process of dimension three with a look at last-hitting times. Bull. Belgian Math. Soc. Simon Stevin 22(2), 319–330 (2015)

    MathSciNet  Google Scholar 

  17. Cerclé, B.: Three-point correlation functions in the \(\mathfrak{sl}_3\) Toda theory II: the formula. Preprint, arXiv:2208.12085 (2022)

  18. Cerclé, B., Huang, Y.: Ward identities in the \(\mathfrak{sl} _3\) Toda field theory. Commun. Math. Phys. 393, 419–475 (2022)

    Google Scholar 

  19. Cerclé, B., Rhodes, R., Vargas, V.: Probabilistic construction of Toda conformal field theories. Ann. Henri Lebesgue 6, 31–64 (2023)

    MathSciNet  Google Scholar 

  20. Chaumont, L.: Conditionings and path decompositions for Lévy processes. Stochast. Process. Appl. 64(1), 39–54 (1996)

    Google Scholar 

  21. Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion, and Time Symmetry. Springer, New York (2005)

    Google Scholar 

  22. Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke Math. J. 163(3), 513–563 (2014)

    MathSciNet  Google Scholar 

  23. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342, 869–907 (2016)

    MathSciNet  Google Scholar 

  24. Ding, J., Dubédat, J., Dunlap, A., Falconet, H.: Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). Publications mathématiques de l’IHÉS 132, 353–403 (2020)

    MathSciNet  Google Scholar 

  25. Dorn, H., Otto, H.-J.: Two- and three-point functions in Liouville theory. Nucl. Phys. B 429(2), 375–388 (1994)

    MathSciNet  Google Scholar 

  26. Dubédat, J.: SLE and the free field: partition functions and couplings. J. AMS 22(4), 995–1054 (2009)

    MathSciNet  Google Scholar 

  27. Dubédat, J., Falconet, H., Gwynne, E., Pfeffer, J., Sun, X.: Weak LQG metrics and Liouville first passage percolation. Probab. Theory Relat. Fields 178, 369–436 (2020)

    MathSciNet  Google Scholar 

  28. Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J. 39–79, 1990 (1990)

    MathSciNet  Google Scholar 

  29. Duplantier, B., Miller, S., Sheffield, J.: Liouville quantum gravity as a mating of trees, volume 427 of Asterisque. SMF (2021)

  30. Fateev, V.A.: MathPhys Odyssey 2001: Integrable Models and Beyond In Honor of Barry M. McCoy, chapter Normalization Factors, Reflection Amplitudes and Integrable Systems, pp. 145–177. Birkhäuser Boston, Boston (2002)

  31. Fateev, V.A., Litvinov, A.V.: On differential equation on four-point correlation function in the Conformal Toda Field Theory. JETP Lett. 81, 594–598 (2005)

    Google Scholar 

  32. Fateev, V.A., Litvinov, A.V.: Correlation functions in conformal Toda field theory. I. JHEP 11, 002 (2007)

    MathSciNet  Google Scholar 

  33. Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn. Wiley, New York (1957)

    Google Scholar 

  34. Gessel, I., Zeilberger, D.: Random walk in a Weyl chamber. Proc. Am. Math. Soc. 115, 27–31 (1992)

    MathSciNet  Google Scholar 

  35. Grabiner, D.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Annales de l’Institut Henri Poincare (B) Probab. Stat. 35(2), 177–204 (1999)

    MathSciNet  Google Scholar 

  36. Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville Theory. Acta Mathematica (to appear) (2020)

  37. Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Segal’s axioms and bootstrap for Liouville theory. Preprint, arXiv:2112.14859, (2021)

  38. Gwynne, E., Miller, J.: Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). Invent. Math. 223, 213–333 (2021)

    MathSciNet  Google Scholar 

  39. Harish-Chandra.: Spherical functions on a Semisimple lie group, I. Am. J. Math. 80(2), 241–310 (1958)

  40. Harish-Chandra. Spherical Functions on a Semisimple Lie Group, II. Am. J. Math. 80(3), 553–613 (1958)

  41. Holden, N., Sun, X.: Convergence of uniform triangulations under the Cardy embedding. Acta Math. 230(1), 93–203 (2023)

    MathSciNet  Google Scholar 

  42. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  43. Jacquet, H.: Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. France 95, 243–309 (1967)

    MathSciNet  Google Scholar 

  44. Kahane, J.-P.: Sur le chaos multiplicatif. Annales des sciences mathématiques du Québec (1985)

  45. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 2d edn. Springer, New York (1998)

    Google Scholar 

  46. Kersting, G., Memişoǧlu, K.: Path decompositions for Markov chains. Ann. Probab. 32(2), 1370–1390 (2004)

    MathSciNet  Google Scholar 

  47. Kostant, B.: Quantisation and representation theory. In: Representation Theory of Lie Groups, Proceedings of SRC/LMS Research Symposium, Oxford, LMS Lecture Notes 34, pp. 287–316. Cambridge University Press, Cambridge (1977)

  48. Kupiainen, A., Rhodes, R., Vargas, V.: Integrability of Liouville theory: proof of the DOZZ formula. Ann. Math. 191(1), 81–166 (2020)

    MathSciNet  Google Scholar 

  49. Le Gall, J.-F.: Une approche élémentaire des théorèmes de décomposition de Williams. Séminaire de probabilités de Strasbourg 20, 447–464 (1986)

    Google Scholar 

  50. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    MathSciNet  Google Scholar 

  51. Le Gall, J.-F.: Mouvement brownien, cônes et processus stables. Probab. Theory Relat. Fields 76, 587–627 (1987)

    Google Scholar 

  52. Mazzeo, R., Vasy, A.: Scattering theory on SL(3)/SO(3): Connections with quantum 3-body scattering. Proc. Lond. Math. Soc. 94(3), 545–593 (2007)

    MathSciNet  Google Scholar 

  53. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    MathSciNet  Google Scholar 

  54. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric. Invent. Math. 219, 75–152 (2020)

    MathSciNet  Google Scholar 

  55. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. Ann. Probab. 49, 2732–2829 (2021)

    MathSciNet  Google Scholar 

  56. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined. Probab. Theory Relat. Fields 179, 1183–1211 (2021)

    MathSciNet  Google Scholar 

  57. Mirimanoff, D.: A propos de l’interprétation géométrique du problème du scrutin. Enseign. Math. (2) 23, 187–189 (1923)

    Google Scholar 

  58. O’Connell, N.: Random Matrix Theory, Interacting Particle Systems and Integrable Systems, volume 65, chapter Whittaker functions and related stochastic processes, pp. 385–409. MSRI Publications (2014)

  59. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)

    MathSciNet  Google Scholar 

  60. O’Connell, N., Seppäläinen, T., Zygouras, N.: Geometric RSK correspondence, Whittaker functions and symmetrized random polymers. Invent. Math. 197, 361–416 (2014)

    MathSciNet  Google Scholar 

  61. Pitman, J.: One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7(3), 511–526 (1975)

    MathSciNet  Google Scholar 

  62. Polyakov, A.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207–210 (1981)

    MathSciNet  Google Scholar 

  63. Remy, G., Zhu, T.: Integrability of boundary Liouville conformal field theory. Commun. Math. Phys. 395, 179–268 (2022)

    MathSciNet  Google Scholar 

  64. Renault, M.: Lost (and found) in translation: André’s actual method and its application to the generalized ballot problem. Am. Math. Mon. 115(4), 358–363 (2008)

    Google Scholar 

  65. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)

    MathSciNet  Google Scholar 

  66. Rhodes, R., Vargas, V.: The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient. Ann. Probab. 47(5), 3082–3107 (2019)

    MathSciNet  Google Scholar 

  67. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, volume 1 of Cambridge Mathematical Library, 2 edn. Cambridge University Press, Cambridge (2000)

  68. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, volume 2 of Cambridge Mathematical Library, 2 edition. Cambridge University Press, Cambridge (2000)

  69. Rösler, M., Voit, M.: Markov processes related with Dunkl operators. Adv. Appl. Math. 21(4), 575–643 (1998)

    MathSciNet  Google Scholar 

  70. Segal, G.: The Definition of Conformal Field Theory. Oxford University Press, Oxford (2004)

    Google Scholar 

  71. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    MathSciNet  Google Scholar 

  72. Sheffield, S.: Gaussian free field for mathematicians. Probab. Theory Relat. Fields 139, 521 (2007)

    MathSciNet  Google Scholar 

  73. Sheffield, S., Werner, W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. Math. 176, 1827–1917 (2012)

    MathSciNet  Google Scholar 

  74. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Classics in Mathematics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  75. Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. Lond. Math. Soc. s3–28(4), 738–768 (1974)

    MathSciNet  Google Scholar 

  76. Wong, M.D.: Universal tail profile of Gaussian multiplicative chaos. Probab. Theory Relat. Fields 177, 711–746 (2020)

    MathSciNet  Google Scholar 

  77. Zamolodchikov, Al., Zamolodchikov, A.: Conformal bootstrap in Liouville field theory. Nucl. Phys. B 477(2), 577–605 (1996)

    MathSciNet  Google Scholar 

  78. Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor. Math. Phys. 65(3), 1205–1213 (1985)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges that this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, Grant Agreement No. 725967.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Cerclé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerclé, B. Three-point correlation functions in the \(\mathfrak {sl}_3\) Toda theory I: reflection coefficients. Probab. Theory Relat. Fields 188, 89–158 (2024). https://doi.org/10.1007/s00440-023-01219-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-023-01219-3

Mathematics Subject Classification

Navigation