Skip to main content
Log in

Dynamic polymers: invariant measures and ordering by noise

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We develop a dynamical approach to infinite volume directed polymer measures in random environments. We define polymer dynamics in \(1+1\) dimension as a stochastic gradient flow on polymers pinned at the origin, for energy involving quadratic nearest neighbor interaction and local interaction with random environment. We prove existence and uniqueness of the solution, continuity of the flow, the order-preserving property with respect to the coordinatewise partial order, and the invariance of the asymptotic slope. We establish ordering by noise which means that if two initial conditions have distinct slopes, then the associated solutions eventually get ordered coordinatewise. This, along with the shear-invariance property and existing results on static infinite volume polymer measures, allows to prove that for a fixed asymptotic slope and almost every realization of the environment, the polymer dynamics has a unique invariant distribution given by a unique infinite volume polymer measure, and, moreover, One Force—One Solution principle holds. We also prove that every polymer measure is concentrated on paths with well-defined asymptotic slopes and give an estimate on deviations from straight lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Kondratiev, Y.G., Röckner, M., Tsikalenko, T.V.: Glauber dynamics for quantum lattice systems. Rev. Math. Phys. 13(1), 51–124 (2001)

    Article  MathSciNet  Google Scholar 

  2. Alberts, T., Rassoul-Agha, F., Simper, M.: Busemann functions and semi-infinite O’Connell-Yor polymers. Bernoulli 26(3), 1927–1955 (2020)

  3. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  4. Bakhtin, Y.: Inviscid Burgers equation with random kick forcing in noncompact setting. Electron. J. Probab. 21, 50 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bates, E., Chatterjee, S.: The endpoint distribution of directed polymers. Ann. Probab. 48(2), 817–871 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bakhtin, Y., Cator, E., Khanin, K.: Space-time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27(1), 193–238 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bakhtin, Y., Khanin, K.: Localization and Perron–Frobenius theory for directed polymers. Mosc. Math. J. 10(4), 667–686, 838 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bakhtin, Y., Khanin, K.: On global solutions of the random Hamilton-Jacobi equations and the KPZ problem. Nonlinearity 31(4), R93–R121 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bakhtin, Y., Li, L.: Zero temperature limit for directed polymers and inviscid limit for stationary solutions of stochastic Burgers equation. J. Stat. Phys. 172(5), 1358–1397 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bakhtin, Y., Li, L.: Thermodynamic limit for directed polymers and stationary solutions of the Burgers equation. Commun. Pure Appl. Math. 72(3), 536–619 (2019)

    Article  MathSciNet  Google Scholar 

  11. Bogachev, V.I., Röckner, M., Wang, F.-Y.: Invariance implies Gibbsian: some new results. Commun. Math. Phys. 248(2), 335–355 (2004)

    Article  MathSciNet  Google Scholar 

  12. Bakhtin, Y., Seo, D.: Localization of directed polymers in continuous space (2020). arXiv:1905.00930

  13. Comets, F.: Directed Polymers in Random Environments, Volume 2175 of Lecture Notes in Mathematics. Springer, Cham (2017). Lecture notes from the 46th Probability Summer School held in Saint-Flour (2016)

  14. Crauel, H.: Markov measures for random dynamical systems. Stoch. Stoch. Rep. 37(3), 153–173 (1991)

    Article  MathSciNet  Google Scholar 

  15. Dunlap, A., Graham, C., Ryzhik, L.: Stationary solutions to the stochastic Burgers equation on the line (2019). arXiv:1910.07464

  16. den Hollander, F.: Random Polymers, Volume 1974 of Lecture Notes in Mathematics. Springer, Berlin (2009). Lectures from the 37th Probability Summer School held in Saint-Flour (2007)

  17. Dunlap, A.: Existence of stationary stochastic Burgers evolutions on \( {R}^2\) and \( {R}^3\). Nonlinearity 33(12), 6480–6501 (2020)

    Article  MathSciNet  Google Scholar 

  18. Flandoli, F., Gess, B., Scheutzow, M.: Synchronization by noise for order-preserving random dynamical systems. Ann. Probab. 45(2), 1325–1350 (2017)

    Article  MathSciNet  Google Scholar 

  19. Fritz, J.: Stationary measures of stochastic gradient systems, infinite lattice models. Z. Wahrsch. Verw. Gebiete 59(4), 479–490 (1982)

    Article  MathSciNet  Google Scholar 

  20. Funaki, T., Spohn, H.: Motion by mean curvature from the Ginzburg–Landau \(\nabla \phi \) interface model. Commun. Math. Phys. 185(1), 1–36 (1997)

    Article  MathSciNet  Google Scholar 

  21. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  22. Georgii, H.-O.: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, vol. 9. Walter de Gruyter & Co., Berlin (1988)

    Book  Google Scholar 

  23. Giacomin, G.: Random Polymer Models. Imperial College Press, London (2007)

    Book  Google Scholar 

  24. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Variational formulas and cocycle solutions for directed polymer and percolation models. Commun. Math. Phys. 346(2), 741–779 (2016)

    Article  MathSciNet  Google Scholar 

  25. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., Yilmaz, A.: Ratios of partition functions for the log-gamma polymer. Ann. Probab. 43(5), 2282–2331 (2015)

    Article  MathSciNet  Google Scholar 

  26. Howard, C.D., Newman, C.M.: Euclidean models of first-passage percolation. Probab. Theory Relat. Fields 108, 153–170 (1997). https://doi.org/10.1007/s004400050105

    Article  MathSciNet  MATH  Google Scholar 

  27. Jahnel, B., Külske, C.: Attractor properties for irreversible and reversible interacting particle systems. Commun. Math. Phys. 366(1), 139–172 (2019)

    Article  MathSciNet  Google Scholar 

  28. Janjigian, C., Rassoul-Agha, F.: Busemann functions and Gibbs measures in directed polymer models on \({\mathbb{Z}}^2\). Ann. Probab. 48(2), 778–816 (2020)

    Article  MathSciNet  Google Scholar 

  29. Janjigian, C., Rassoul-Agha, F.: Uniqueness and ergodicity of stationary directed polymers on \(\mathbb{Z}^2\). J. Stat. Phys. 179(3), 672–689 (2020)

    Article  MathSciNet  Google Scholar 

  30. Janjigian, C., Rassoul-Agha, F., Seppäläinen, T.: Geometry of geodesics through Busemann measures in directed last-passage percolation (2020). arXiv:1908.09040

  31. Kolmogoroff, A.: Zur Umkehrbarkeit der statistischen Naturgesetze. Math. Ann. 113(1), 766–772 (1937)

    Article  MathSciNet  Google Scholar 

  32. Koonin, E.V.: The Logic of Chance: The Nature and Origin of Biological Evolution. FT Press, Upper Saddle River (2011)

    Google Scholar 

  33. Liggett, T.M.: Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276. Springer, New York (1985)

    Google Scholar 

  34. Ledrappier, F., Young, L.-S.: Entropy formula for random transformations. Probab. Theory Relat. Fields 80(2), 217–240 (1988)

    Article  MathSciNet  Google Scholar 

  35. Mukherjee, C., Varadhan, S.R.S.: Brownian occupation measures, compactness and large deviations. Ann. Probab. 44(6), 3934–3964 (2016)

    Article  MathSciNet  Google Scholar 

  36. Roberts, G.O., Tweedie, R.L., et al.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996)

    Article  MathSciNet  Google Scholar 

  37. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, Volume 1: Foundations. Wiley, Chichester (1994)

    MATH  Google Scholar 

  38. Sinaĭ, Ya.G.: Theory of Phase Transitions: Rigorous Results, Volume 108 of International Series in Natural Philosophy. Pergamon Press, Oxford (1982). Translated from the Russian by J. Fritz, A. Krámli, P. Major and D. Szász

  39. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, vol. 140. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  40. von Foerster, H.: On Self-Organizing Systems and Their Environments, pp. 1–19. Springer New York, New York (2003). Originally published in: Yovits, M.C., Cameron, S., (eds.) Self-Organizing Systems. Pergamon Press, London, pp. 31–50 (1960)

  41. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods, Volume 27 of Applications of Mathematics (New York). Springer, Berlin (1995). A Mathematical Introduction

Download references

Acknowledgements

Yuri Bakhtin is grateful to the National Science Foundation for partial support via grant DMS-1811444. Both authors thank the anonymous referee for the comments that helped to improve the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtin, Y., Chen, HB. Dynamic polymers: invariant measures and ordering by noise. Probab. Theory Relat. Fields 183, 167–227 (2022). https://doi.org/10.1007/s00440-021-01099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01099-5

Mathematics Subject Classification

Navigation