Skip to main content
Log in

Optimal Hölder continuity and dimension properties for SLE with Minkowski content parametrization

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We make use of the fact that a two-sided whole-plane Schramm–Loewner evolution (SLE\(_\kappa \)) curve \(\gamma \) for \(\kappa \in (0,8)\) from \(\infty \) to \(\infty \) through 0 may be parametrized by its d-dimensional Minkowski content, where \(d=1+\frac{\kappa }{8}\), and become a self-similar process of index \(\frac{1}{d}\) with stationary increments. We prove that such \(\gamma \) is locally \(\alpha \)-Hölder continuous for any \(\alpha <\frac{1}{d}\). In the case \(\kappa \in (0,4]\), we show that \(\gamma \) is not locally \(\frac{1}{d}\)-Hölder continuous. We also prove that, for any deterministic closed set \(A\subset \mathbb {R}\), the Hausdorff dimension of \(\gamma (A)\) almost surely equals d times the Hausdorff dimension of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beffara, V.: The dimension of SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Friz, P., Tran, H.: On the regularity of SLE trace (2016). arXiv:1611.01107

  3. Frostman, O.: Potential déquilibre et capacité des ensembles avec quelques applications a la théorie des fonctions. Meddel. Lunds Univ. Math. Sem. 3, 1–118 (1935)

    MATH  Google Scholar 

  4. Garsia, A.M., Rodemich, E., Rumsey Jr., H.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gwynne, E., Holden, N., Miller, J.: Dimension transformation formula for conformal maps into the complement of an SLE curve (2016). arXiv:1603.0516

  6. Gwynne, E., Holden, N., Miller, J.: An almost sure KPZ relation for SLE and Brownian motion (2015). arXiv:1512.01223

  7. Johansson, F., Lawler, G.: Optimal Hölder exponent for the SLE path. Duke Math. J. 159(3), 351–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lawler, G.: Conformally Invariant Processes in the Plane. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  9. Lawler, G., Rezaei, M.A.: Minkowski content and natural parametrization for the Schramm–Loewner evolution. Ann. Probab. 43(3), 1082–1120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawler, G., Rezaei, M.A.: Up-to-constants bounds on the two-point Green’s function for SLE curves. Electron. Commun. Probab. 20(45), 1–13 (2015). https://doi.org/10.1214/ECP.v20-4246

    MathSciNet  MATH  Google Scholar 

  11. Lawler, G., Schramm, O., Werner, W.: Values of Brownian intersection exponents I: half-plane exponents. Acta Math. 187(2), 237–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawler, G., Sheffield, S.: A natural parametrization for the Schramm–Loewner evolution. Ann. Probab. 39(5), 1896–1937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawler, G., Viklund, F.: Convergence of loop-erased random walk in the natural parametrization (2016). arXiv:1603.05203

  15. Lawler, G., Viklund, F.: Convergence of radial loop-erased random walk in the natural parametrization (2017). arXiv:1703.03729

  16. Lawler, G., Werness, B.: Multi-point Green’s function for SLE and an estimate of Beffara. Ann. Prob. 41, 1513–1555 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lawler, G., Zhou, W.: SLE curves and natural parametrization. Ann. Probab. 41(3A), 1556–1584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawler, G., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lind, J.: Hölder regularity of the SLE trace. Trans. Am. Math. Soc. 360(7), 3557–3579 (2008)

    Article  MATH  Google Scholar 

  20. McKean Jr., H.P.: Hausdorff–Besicovitch dimension of Brownian motion paths. Duke Math. J. 22, 229–234 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miller, J., Sheffield, S.: Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees (2013). arXiv:1302.4738

  22. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  23. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/18, Release 1.0.6 of 2013-05-06

  24. Rezaei, M.A.: Hausdorff measure of SLE curves. arXiv:1212.5847 (to appear in Stoch. Proc. Appl.)

  25. Rezaei, M.A., Zhan, D.: Higher moments of the natural parametrization for SLE curves. Ann. Inst. H. Poincaré Probab. Statist. 53(1), 182–199 (2017)

    Article  MATH  Google Scholar 

  26. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 879–920 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Werness, B.: Regularity of Schramm–Loewner evolutions, annular crossings, and rough path theory. Electron. J. Probab. 17(81), 1–21 (2012). https://doi.org/10.1214/EJP.v17-2331

    MathSciNet  MATH  Google Scholar 

  29. Zhan, D.: SLE loop measures (2017). arXiv:1702.08026

  30. Zhan, D.: Decomposition of Schramm–Loewner evolution along its curve (2016). In preprint, arXiv:1509.05015

  31. Zhan, D.: Ergodicity of the tip of an SLE curve. Prob. Theory Relat. Fields 164(1), 333–360 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Greg Lawler and Nina Holden for inspiring discussions and valuable comments, acknowledges the support from the National Science Foundation (DMS-1056840) and from the Simons Foundation (#396973), and thanks Columbia University and KIAS, where part of this work was carried out during two conferences held by them. The author also thanks the anonymous referees, whose comments improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, D. Optimal Hölder continuity and dimension properties for SLE with Minkowski content parametrization. Probab. Theory Relat. Fields 175, 447–466 (2019). https://doi.org/10.1007/s00440-018-0895-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0895-0

Mathematics Subject Classification

Navigation