Skip to main content
Log in

Geodesics and the competition interface for the corner growth model

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the directed last-passage percolation model on the planar integer lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, outside the class of exactly solvable models. In Georgiou et al. (Probab Theory Relat Fields, 2016, doi:10.1007/s00440-016-0729-x) we constructed stationary cocycles and Busemann functions for this model. Using these objects, we prove new results on the competition interface, on existence, uniqueness, and coalescence of directional semi-infinite geodesics, and on nonexistence of doubly infinite geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alm, S.E.: A note on a problem by Welsh in first-passage percolation. Combin. Probab. Comput. 7(1), 11–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alm, S.E., Wierman, J.C.: Inequalities for means of restricted first-passage times in percolation theory. Combin. Probab. Comput. 8(4), 307–315 (1999). Random graphs and combinatorial structures (Oberwolfach, 1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auffinger, A., Damron, M.: Differentiability at the edge of the percolation cone and related results in first-passage percolation. Probab. Theory Related Fields 156(1–2), 193–227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auffinger, A., Damron, M., Hanson, J.: Limiting geodesics for first-passage percolation on subsets of \(\mathbb{Z}^2\). Ann. Appl. Probab. 25(1), 373–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bakhtin, Y.: Burgers equation with random boundary conditions. Proc. Am. Math. Soc. 135(7), 2257–2262 (2007) (electronic)

  6. Bakhtin, Y.: The Burgers equation with Poisson random forcing. Ann. Probab. 41(4), 2961–2989 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakhtin, Y.: Inviscid burgers equation with random kick forcing in noncompact setting. Electron. J. Probab. 21, 1–50, paper no. 37 (2016). doi:10.1214/16-EJP4413

  8. Bakhtin, Y., Cator, E., Khanin, K.: Space-time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27(1), 193–238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakhtin, Y., Khanin, K.: Localization and Perron-Frobenius theory for directed polymers. Mosc. Math. J. 10(4), 667–686, 838 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Cator, E., Pimentel, L.P.R.: A shape theorem and semi-infinite geodesics for the Hammersley model with random weights. ALEA Lat. Am. J Probab. Math. Stat. 8, 163–175 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Cator, E., Pimentel, L.P.R.: Busemann functions and equilibrium measures in last passage percolation models. Probab. Theory Related Fields 154(1–2), 89–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cator, E., Pimentel, L.P.R.: Busemann functions and the speed of a second class particle in the rarefaction fan. Ann. Probab. 41(4), 2401–2425 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohn, H., Elkies, N., Propp, J.: Local statistics for random domino tilings of the Aztec diamond. Duke Math. J. 85(1), 117–166 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coupier, D.: Multiple geodesics with the same direction. Electron. Commun. Probab. 16, 517–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Damron, M., Hanson, J.: Busemann functions and infinite geodesics in two-dimensional first-passage percolation. Commun. Math. Phys. 325(3), 917–963 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durrett, R., Liggett, T.M.: The shape of the limit set in Richardson’s growth model. Ann. Probab. 9(2), 186–193 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. W, E., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. (2) 151(3), 877–960 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferrari, P.A., Kipnis, C.: Second class particles in the rarefaction fan. Ann. Inst. H. Poincaré Probab. Statist. 31(1), 143–154 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Ferrari, P.A., Martin, J.B., Pimentel, L.P.R.: A phase transition for competition interfaces. Ann. Appl. Probab. 19(1), 281–317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferrari, P.A., Pimentel, L.P.R.: Competition interfaces and second class particles. Ann. Probab. 33(4), 1235–1254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garet, O., Marchand, R.: Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15(1A), 298–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Geodesics and the competition interface for the corner growth model (2015). arXiv:1510.00860v1 (preprint)

  23. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Stationary cocycles and Busemann functions for the corner growth model. Probab. Theory Relat. Fields (2016). doi:10.1007/s00440-016-0729-x

  24. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., Yılmaz, A.: Ratios of partition functions for the log-gamma polymer. Ann. Probab. 43(5), 2282–2331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoang, V.H., Khanin, K.: Random Burgers equation and Lagrangian systems in non-compact domains. Nonlinearity 16(3), 819–842 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoffman, C.: Coexistence for Richardson type competing spatial growth models. Ann. Appl. Probab. 15(1B), 739–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab. 18(5), 1944–1969 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Howard, C.D., Newman, C.M.: Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29(2), 577–623 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Iturriaga, R., Khanin, K.: Burgers turbulence and random Lagrangian systems. Commun. Math. Phys. 232(3), 377–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jockusch, W., Propp, J., Shor, P.: Random domino tilings and the arctic circle theorem (1998). arXiv:math/9801068

  31. Licea, C., Newman, C.M.: Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24(1), 399–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mairesse, J., Prabhakar, B.: The existence of fixed points for the \(\cdot /GI/1\) queue. Ann. Probab. 31(4), 2216–2236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marchand, R.: Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12(3), 1001–1038 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martin, J.B.: Limiting shape for directed percolation models. Ann. Probab. 32(4), 2908–2937 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mountford, T., Guiol, H.: The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab. 15(2), 1227–1259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newman, C.M.: A surface view of first-passage percolation. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), pp. 1017–1023. Birkhäuser, Basel (1995)

  37. Pimentel, L.P.R.: Multitype shape theorems for first passage percolation models. Adv. Appl. Probab. 39(1), 53–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pimentel, L.P.R.: Duality between coalescence times and exit points in last-passage percolation models. Ann. Probab. (2015). arXiv:1307.7769 (to appear)

  39. Prabhakar, B.: The attractiveness of the fixed points of a \(\cdot /GI/1\) queue. Ann. Probab. 31(4), 2237–2269 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rassoul-Agha, F., Seppäläinen, T., Yılmaz, A.: Quenched free energy and large deviations for random walks in random potentials. Commun. Pure Appl. Math. 66(2), 202–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rost, H.: Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58(1), 41–53 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Seppäläinen, T.: Hydrodynamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Related Fields 4(1), 1–26 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Seppäläinen, T.: Existence of hydrodynamics for the totally asymmetric simple \(K\)-exclusion process. Ann. Probab. 27(1), 361–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wehr, J.: On the number of infinite geodesics and ground states in disordered systems. J. Stat. Phys. 87(1–2), 439–447 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wehr, J., Woo, J.: Absence of geodesics in first-passage percolation on a half-plane. Ann. Probab. 26(1), 358–367 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wüthrich, M.V.: Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the plane. In: In and out of equilibrium (Mambucaba, 2000), Progr. Probab., vol. 51, pp. 205–226. Birkhäuser Boston, Boston (2002)

Download references

Acknowledgments

N. Georgiou was partially supported by a Wylie postdoctoral fellowship at the University of Utah and the Strategic Development Fund (SDF) at the University of Sussex. F. Rassoul-Agha and N. Georgiou were partially supported by National Science Foundation Grant DMS-0747758. F. Rassoul-Agha was partially supported by National Science Foundation Grant DMS-1407574 and by Simons Foundation Grant 306576. T. Seppäläinen was partially supported by National Science Foundation Grants DMS-1306777 and DMS-1602486, by Simons Foundation Grant 338287, and by the Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Seppäläinen.

A Auxiliary technical results

A Auxiliary technical results

Cocycles satisfy a uniform ergodic theorem. The following is a special case of Theorem 9.3 of [24]. Note that a one-sided bound suffices for a hypothesis. Recall Definition 3.1 of stationary \(L^1(\mathbb {P})\) cocycles. Let \(h({B})\in \mathbb {R}^2\) denote the vector that satisfies

$$\begin{aligned} \mathbb {E}[{B}(0,e_i)]=-h({B})\cdot e_i \qquad \text {for }i\in \{1,2\}. \end{aligned}$$

Theorem A.1

Assume \(\mathbb {P}\) is ergodic under the group \(\{T_x\}_{x\in \mathbb {Z}^2}\). Let B be a stationary \(L^1(\mathbb {P})\) cocycle. Assume there exists a function V such that for \(\mathbb {P}\)-a.e. \(\omega \)

$$\begin{aligned} \varlimsup _{\varepsilon \searrow 0}\;\varlimsup _{n\rightarrow \infty } \;\max _{x: \vert x\vert _1\le n}\;\frac{1}{n} \sum _{0\le k\le \varepsilon n} \vert V(T_{x+ke_i}\omega )\vert =0\qquad \text {for }i\in \{1,2\} \end{aligned}$$
(A.1)

and \(\max _{i\in \{1,2\}} B(\omega ,0,e_i)\le V(\omega )\). Then

$$\begin{aligned} \lim _{n\rightarrow \infty }\;\max _{\begin{array}{c} x=z_1+\cdots +z_n\\ z_{1,n}\in \{e_1, e_2\}^n \end{array}} \;\frac{\vert B(\omega ,0,x)+h(B)\cdot x\vert }{n}=0 \qquad \text {for } \mathbb {P}\hbox {-}\hbox {a.e.}\ \omega . \end{aligned}$$

If the process \(\{V(T_x\omega ):x\in \mathbb {Z}^2\}\) is i.i.d., then a sufficient condition for (A.1) is \(\mathbb {E}(\vert V\vert ^p)<\infty \) for some \(p>2\) [40, Lemma A.4].

The following is a deterministic fact about gradients of passage times. This idea has been used profitably in planar percolation, and goes back at least to [1, 2]. See Lemma 6.3 of [23] for a proof.

Lemma A.2

Fix \(\omega \in \varOmega \). Let \(u,v\in \mathbb {Z}^2_+\) be such that \(\vert u\vert _1=\vert v\vert _1\ge 1\) and \(u\cdot e_1\le v\cdot e_1\). Then

$$\begin{aligned}&G_{0,u}-G_{e_1,u}\ge G_{0,v}-G_{e_1,v}\quad \text {and}\end{aligned}$$
(A.2)
$$\begin{aligned}&G_{0,u}-G_{e_2,u}\le G_{0,v}-G_{e_2,v}. \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiou, N., Rassoul-Agha, F. & Seppäläinen, T. Geodesics and the competition interface for the corner growth model. Probab. Theory Relat. Fields 169, 223–255 (2017). https://doi.org/10.1007/s00440-016-0734-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0734-0

Keywords

Mathematics Subject Classification

Navigation